OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13727–13736

Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide

Yongkang Gong, Leiran Wang, Xiaohong Hu, Xiaohui Li, and Xueming Liu  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 13727-13736 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (898 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface plasmon polariton reflector (SPPR) based on metal-insulator-metal (MIM) Bragg grating waveguide is numerically studied. A quasi-chirped technique is applied to the engraved grooves in the surface of the MIM waveguide, and a new kind of broad-bandgap SPPR is achieved. Meanwhile, by optimizing the profile of gap width between the metal and dielectric, the spectral sidelobe of SPPR is effectively suppressed and thus the performance of the SPPR is further improved.

© 2009 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(240.6680) Optics at surfaces : Surface plasmons
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Optics at Surfaces

Original Manuscript: June 17, 2009
Revised Manuscript: July 13, 2009
Manuscript Accepted: July 13, 2009
Published: July 24, 2009

Yongkang Gong, Leiran Wang, Xiaohong Hu, Xiaohui Li, and Xueming Liu, "Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide," Opt. Express 17, 13727-13736 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L.  Barnes, A.  Dereux, and T. W.  Ebbesen, "surface plasmon subwavelength optics," Nature.  424,824-830 (2003). [CrossRef] [PubMed]
  2. H.  Rather, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  3. K.  Li, M. I.  Stockman, and D. J.  Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett.  91, 227402 (2003). [CrossRef] [PubMed]
  4. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface Plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833 (2004). [CrossRef]
  5. K. Donghyun, "Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors," Appl. Opt. 44, 3218-3223 (2005). [CrossRef]
  6. A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, "Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons," Opt. Express. 13, 4237-4243 (2005). [CrossRef] [PubMed]
  7. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, "Compact Bragg gratings for long-range surface plasmon polaritons," J. Lightwave Technol. 24, 912-918 (2006). [CrossRef]
  8. S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experiemental demonstration of fiber-accessible metal nanoparticle plasmon waveguide for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005). [CrossRef]
  9. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons," J. Lightw. Technol. 23, 413- 422 (2005). [CrossRef]
  10. Kazuo Tanaka, Masahiro Tanaka, and Tatsuhiko Sugiyama, "Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides," Opt. Express. 13, 256-266 (2005) [CrossRef] [PubMed]
  11. P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express. 14, 13030-13042 (2006). [CrossRef] [PubMed]
  12. S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, "Novel efficient design of Y-splitter for surface plasmon polariton applications," Opt. Express. 16, 14369-14379 (2008) [CrossRef] [PubMed]
  13. M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, "Extremely short-length surface plasmon resonance devices," Opt. Express. 16, 20227-20240 (2008) [CrossRef] [PubMed]
  14. Z. Zheng, Y. Wan, X. Zhao, and J. Zhu, "Spectral interferometric measurement of wavelength-dependent phase response for surface plasmon resonance sensors," Appl. Opt. 48, 2491-2495 (2009). [CrossRef] [PubMed]
  15. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.Y. Laluet, and T.W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature. 440, 508-511 (2006). [CrossRef] [PubMed]
  16. Z. Han, L. Liu, and E. Forsberg, "Ultra-compact directional couplers and Mach-Zehnder interferometers based on surface plasmon polariton," Opt. Commun. 259, 690-695 (2006). [CrossRef]
  17. J. C. Weeber, A. Bouhelier, F. G. Des, L. Markey and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano Lett. 7, 1352-1359 (2007). [CrossRef] [PubMed]
  18. P. Berin, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B.  61, 10484-10503 (2000). [CrossRef]
  19. R. Charbonneau, P. Berini, E. Berolo, and E. L. Shrzek, "Experimental observation of plasmon polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000). [CrossRef]
  20. S. Jetté-Charbonneau, "A study of Bragg gratings based on plasmon-polariton waveguides," M.A.Sc. thesis, University of Ottawa, Ottawa, Canada, 2003.
  21. S. Jetté-Charbonneau, R. Charbonnneau, N. Lahoud, G. A. Mattiussu, and P. Berini. "Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment." IEEE J. Quantum Electron. 41, 1480-1491 (2005) [CrossRef]
  22. S. Jetté-Charbonneau and P. Berini, "Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides," J. Opt. Soc. Am. A. 23, 1757-1767 (2006). [CrossRef]
  23. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, "Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons," J. Lightwave Technol. 24, 477-494 (2006). [CrossRef]
  24. P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahound, and G. Mattiussi., "Long-range surface plasmon-polariton waveguides and devices in lithium niobate," J. Appl. Phys. 103, 113114 (2007) [CrossRef]
  25. J. Mu and W. Huang, "Low-Loss Insulator-Metal-Insulator SPPs Bragg Reflector," in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper JMB41
  26. P. Berini, R. Charbonnneau, and N. Lahoud, "Long-Range Surface Plasmons Along Membrane-Supported Metal Stripes," IEEE J. Quantum Electron. 14, 1479-1495 (2008) [CrossRef]
  27. R , Selker, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A. 21, 2442-2446 (2004). [CrossRef]
  28. P. Berini, "Bulk and surface sensitivities of surface plasmon waveguides," New J. Phys. 10, 105010 (2008). [CrossRef]
  29. J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express. 16, 413-425 (2008). [CrossRef] [PubMed]
  30. G. Veronis, Z. Yu, S. Kocabas, Miller. D, M. Brongersma, and S. Fan, "Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale," Chin. Opt. Lett. 7, 302-308 (2009). [CrossRef]
  31. J. A.  Dionne, L. A.  Sweatlock, and H. A.  Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B.  73, 035407- 035415 (2006). [CrossRef]
  32. B.  Wang and G. P.  Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett.  87, 013107-013109 (2005). [CrossRef]
  33. A.  Hosseini and Y.  Massoud, "A low-loss metal-insulator-metal plasmonic Bragg reflector," Opt. Express.  14, 11318-11323 (2006). [CrossRef]
  34. A. Hosseini, H. Nejati, and Y. Massoud, "Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Opt. Express. 16, 1475-1480 (2008). [CrossRef] [PubMed]
  35. Z. H. Han, E. Forsberg, and S. L. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett.  19, 91-93 (2007). [CrossRef]
  36. J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Express. 16, 4888-4894 (2008). [CrossRef] [PubMed]
  37. L. Frandsen, A. Harpoth, P. Borel, M. Kristensen, J. Jensen, and O. Sigmund, "Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization," Opt. Express 12, 5916-5921 (2004). [CrossRef] [PubMed]
  38. K. A. Suneet, M. Usha, and P. O. Sant, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B. 23, 2566-2571 (2006). [CrossRef]
  39. T. Erdogan, "Fiber grating spectrum," J. Lightw. Technol. 15, 1277-1293 (1997). [CrossRef]
  40. K. Ennser, M. N. Zervas, and R. I. Laming, "Optimization of apodized linearly chirped fiber gratings for optical communications," IEEE J. Quantum Electron. 34, 770-778(1998). [CrossRef]
  41. S. Jetté-Charbonneau and P. Berini, "Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides," J. Opt. Soc. Am. A. 23, 1757-1767 (2006) [CrossRef]
  42. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B. 6, 4370-4379 (1972). [CrossRef]
  43. A. Taflove, and S. C. Hagness, "Computational Electrodynamics. The Finite-Difference Time-Domain Method," 2nd ed. 2000 (Artech House, Boston.).
  44. M. Kohmoto, B. Sutherland, and K. Iguchi, "Localization of optics: Quasiperiodic media," Phys. Rev. Lett. 58, 2436-2438 (1987). [CrossRef] [PubMed]
  45. P. Yeh, A. Yariv, and C. S. Hong, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am. 67, 423-437 (1977). [CrossRef]
  46. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1098 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited