OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13792–13809

Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation

Edouard Berrocal, David L. Sedarsky, Megan E. Paciaroni, Igor V. Meglinski, and Mark A. Linne  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 13792-13809 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2882 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In Part I of this study [1], good agreement between experimental measurements and results from Monte Carlo simulations were obtained for the spatial intensity distribution of a laser beam propagating within a turbid environment. In this second part, the validated Monte Carlo model is used to investigate spatial and temporal effects from distinct scattering orders on image formation. The contribution of ballistic photons and the first twelve scattering orders are analyzed individually by filtering the appropriate data from simulation results. Side-scattering and forward-scattering detection geometries are investigated and compared. We demonstrate that the distribution of positions for the final scattering events is independent of particle concentration when considering a given scattering order in forward detection. From this observation, it follows that the normalized intensity distribution of each order, in both space and time, is independent of the number density of particles. As a result, the amount of transmitted information is constant for a given scattering order and is directly related to the phase function in association with the detection acceptance angle. Finally, a contrast analysis is performed in order to quantify this information at the image plane.

© 2009 Optical Society of America

OCIS Codes
(290.4020) Scattering : Mie theory
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

ToC Category:

Original Manuscript: April 27, 2009
Revised Manuscript: July 7, 2009
Manuscript Accepted: July 17, 2009
Published: July 24, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Edouard Berrocal, David L. Sedarsky, Megan E. Paciaroni, Igor V. Meglinski, and Mark A. Linne, "Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation," Opt. Express 17, 13792-13809 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, "Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution," Opt. Express 15, 10649-10665 (2007) [CrossRef] [PubMed]
  2. H. C. van de Hulst, Light scattering by small particles (Dover, N.Y., 1981)
  3. C. Bohren and D. Huffman, Absorption and scattering of light by small particles (Wiley, N.Y., 1983)
  4. M. A. Linne M. Paciaroni, E. Berrocal and D. Sedarsky, "Ballistic imaging of liquid breakup processes in dense sprays," Proc. Combust. Inst. 32, 2147-2161 (2009) [CrossRef]
  5. B. Kaldvee, A. Ehn, J. Bood, and M. Aldén, "Development of a picosecond lidar system for large-scale combustion diagnostics," Appl. Opt. 48, B65-B72 (2009) [CrossRef] [PubMed]
  6. G. E. Anderson, F. Liu, and R. R. Alfano, "Microscope imaging through highly scattering media," Opt. Lett. 19, 981 (1994) [CrossRef] [PubMed]
  7. L. Wang, X. Liang, P. Galland, P. P. Ho, and R. R. Alfano, "True scattering coefficients of turbid matter measured by early-time gating," Opt. Lett. 20, 913-915 (1995) [CrossRef] [PubMed]
  8. J. C. Hebden, R. A. Kruger, and K. S. Wong, " Time resolved imaging through a highly scattering medium," Appl. Opt. 30, 788- (1991) [CrossRef] [PubMed]
  9. O. Emile, F. Bretenaker, and A. Le Floch, "Rotating polarization imaging in turbid media," Opt. Lett. 21, 1706-1708 (1996) [CrossRef] [PubMed]
  10. V. Sankaran, K. Schnenberger, J. T. Walsh, and D. J. Maitland, "Polarization Discrimination of Coherently Propagating Light in Turbid Media," Appl. Opt. 38, 4252-4261 (1999) [CrossRef]
  11. K. A. Stetson, "Holographic fog penetration," J. Opt. Soc. Am. 57, 1060-1061 (1967) [CrossRef]
  12. C. Dunsby and P. M. W. French, "Techniques for Depth-Resolved Imaging through Turbid Media including Coherence-gated Imaging," J. Phys. D: Appl. Phys. 36R207-R227 (2003) [CrossRef]
  13. R. M. Measures, Laser Remote Sensing: Fundamentals and applications (Krieger, Florida, 1992)
  14. M. Gai, M. Gurioli, P. Bruscaglioni, A. Ismaelli, and G. Zaccanti, "Laboratory simulations of lidar returns from clouds," Appl. Opt. 35, 5435-5442 (1996) [CrossRef] [PubMed]
  15. E. Berrocal, D. Y. Churmakov, V. P. Romanov, M. C. Jermy, and I. V. Meglinski, "Crossed source/detector geometry for novel spray diagnostic: Monte Carlo and analytical results", Appl. Opt. 44, 2519-2529 (2005) [CrossRef] [PubMed]
  16. I. M. Sobol, The Monte Carlo Method (University of Chicago, Chicago, Ill., 1974)
  17. L. Wang, S. L. Jacques, L. Zheng, "MCML - Monte Carlo modelling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995) [CrossRef] [PubMed]
  18. G. Zaccanti, "Monte Carlo study of light propagation in optically thick media: point source case," Appl. Opt. 30, 2031-2041 (1991) [CrossRef] [PubMed]
  19. E. Berrocal, Multiple scattering of light in optical diagnostics of dense sprays and other complex turbid media (PhD Thesis, Cranfield University, 2006)
  20. V. P.  Romanov, D. Yu.  Churmakov, E.  Berrocal and I. V.  Meglinski, "Low-order light scattering in multiple scattering disperse media," Opt. Spectros. 97, 847-854 (2004)
  21. I. Meglinski, M. Kirillin, V. Kuzmin, and R. Myllylä, "Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method," Opt. Lett. 33, 1581-1583 (2008) [CrossRef] [PubMed]
  22. L. R. Poole, D. D. Venable, and J. W. Campbell, "Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems," Appl. Opt. 20, 3653-3656 (1981) [CrossRef] [PubMed]
  23. P. Bruscaglioni, P. Donelli, A. Ismaelli, and G. Zaccanti, "Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium," Appl. Opt. 32, 2813-2824 (1993) [CrossRef] [PubMed]
  24. X. Gan and M. Gu, "Effective point-spread function for fast image modeling and processing in microscopic imaging through turbid media," Opt. Lett. 24, 741-743 (1999) [CrossRef]
  25. C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, A. Delfour, "Interaction between ultra short pulses and a dense scattering medium by Monte Carlo simulation: consideration of particle size effect," Opt. Commun. 220, 237-245, (2003) [CrossRef]
  26. C. Calba, C. Rozé, T. Girasole, L. Méès, "Monte Carlo simulation of the interaction between an ultra-short pulse and a strongly scattering medium: The case of large particles," Opt. Commun. 265, 373-382, (2006) [CrossRef]
  27. Q1. C. Calba, L. Méès, C. Rozé, and T. Girasole, "Ultrashort pulse propagation through a strongly scattering medium: simulation and experiments," J. Opt. Soc. Am. A 25, 1541-1550 (2008) [CrossRef]
  28. Y. Kuga, A. Ishimaru, and A. P. Bruckner, "Experiments on picosecond pulse propagation in a diffuse medium," J. Opt. Soc. Am. 73, 1812-1815 (1983) [CrossRef]
  29. K. M. Yoo and R. R. Alfano, "Time-resolved coherent and incoherent components of forward light scattering in random media," Opt. Lett. 15, 320- (1990) [CrossRef] [PubMed]
  30. G. Zaccanti, P. Bruscaglioni, A. Ismaelli, L. Carraresi, M. Gurioli, and Q. Wei, "Transmission of a pulsed thin light beam through thick turbid media: experimental results," Appl. Opt. 31, 2141-2147 (1992) [CrossRef] [PubMed]
  31. Feng Liu, K. M. Yoo, and R. R. Alfano, "Transmitted photon intensity through biological tissues within various time windows," Opt. Lett. 19, 740-742 (1994) [CrossRef] [PubMed]
  32. S. G. Demos and R. R. Alfano, "Temporal gating in highly scattering media by the degree of optical polarization," Opt. Lett. 21, 161-163 (1996) [CrossRef] [PubMed]
  33. V. M. Podgaetsky, S. A. Tereshchenko, A. V. Smirnov, and N. S. Vorob'ev, "Bimodal temporal distribution of photons in ultrashort laser pulse passed through a turbid medium," Opt. Commun. 180, 217-223 (2000) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1294 KB)     
» Media 2: AVI (1188 KB)     
» Media 3: AVI (2226 KB)     
» Media 4: AVI (1206 KB)     
» Media 5: AVI (1188 KB)     
» Media 6: AVI (2226 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited