OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13810–13818

Reduction of spherical-aberration impact in microscopy by wavefront coding

G. Saavedra, I. Escobar, R. Martínez-Cuenca, E. Sánchez-Ortiga, and M. Martínez-Corral  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 13810-13818 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (367 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In modern high-NA optical scanning instruments, like scanning microscopes, the refractive-index mismatch between the sample and the immersion medium introduces a significant amount of spherical aberration when imaging deep inside the specimen, spreading out the impulse response. Since such aberration depends on the focalization depth, it is not possible to achieve a static global compensation for the whole 3D sample in scanning microscopy. Therefore a depth-variant impulse response is generated. Consequently, the design of pupil elements that increase the tolerance to this aberration is of great interest. In this paper we report a hybrid technique that provides a focal spot that remains almost invariant in the depth-scanning processing of thick samples. This invariance allows the application of 3D deconvolution techniques to that provide an improved recovery of the specimen structure when imaging thick samples.

© 2009 OSA

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.6890) Image processing : Three-dimensional image processing
(110.6880) Imaging systems : Three-dimensional image acquisition
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:

Original Manuscript: May 4, 2009
Revised Manuscript: June 23, 2009
Manuscript Accepted: June 24, 2009
Published: July 24, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

G. Saavedra, I. Escobar, R. Martínez-Cuenca, E. Sánchez-Ortiga, and M. Martínez-Corral, "Reduction of spherical-aberration impact in microscopy by wavefront coding," Opt. Express 17, 13810-13818 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Tsujiuchi, “Correction of optical images by compensation of aberrations and by spatial frequency filtering,” Prog. Opt. 2, 131–180 (1963). [CrossRef]
  2. R. Barakat and A. Houston, “Transfer function of an annular aperture in the presence of spherical aberration,” J. Opt. Soc. Am. A 55(5), 538–541 (1965). [CrossRef]
  3. J. P. Mills and B. J. Thompson, “Effect of aberrations and apodization on the performance of coherent optical systems. I. The amplitude impulse response,” J. Opt. Soc. Am. A 3(5), 694–703 (1986). [CrossRef]
  4. J. Ojeda-Castañeda, P. Andrés, and A. Díaz, “Annular apodizers for low sensitivity to defocus and to spherical aberration,” Opt. Lett. 11(8), 487–489 (1986). [CrossRef] [PubMed]
  5. J. Ojeda-Castañeda, P. Andrés, and A. Díaz, “Strehl ratio with low sensitivity to spherical aberration,” J. Opt. Soc. Am. A 5(8), 1233–1236 (1988). [CrossRef]
  6. S. Mezouari and A. R. Harvey, “Phase pupil functions for reduction of defocus and spherical aberrations,” Opt. Lett. 28(10), 771–773 (2003). [CrossRef] [PubMed]
  7. C. J. R. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30(25), 3563–3568 (1991). [CrossRef] [PubMed]
  8. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002). [CrossRef] [PubMed]
  9. M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006). [CrossRef]
  10. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008). [CrossRef] [PubMed]
  11. C. Preza and J. A. Conchello, “Depth-variant maximum likelihood restoration for three-dimensional fluorescence microscopy,” J. Opt. Soc. Am. A 21(9), 1593–1601 (2004). [CrossRef]
  12. J. Ojeda-Castañeda, R. Ramos, and A. Noyola-Isgleas, “High focal depth by apodization and digital restoration,” Appl. Opt. 27(12), 2583–2586 (1988). [CrossRef] [PubMed]
  13. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34(11), 1859–1865 (1995). [CrossRef] [PubMed]
  14. W. T. Cathey and E. R. Dowski, “New paradigm for imaging systems,” Appl. Opt. 41(29), 6080–6092 (2002). [CrossRef] [PubMed]
  15. M. Gu, Advanced Optical Imaging Theory, (Springer-Verlag, Berlin) 2000.
  16. In a real microscopy experiments there is, still, a coverslip between the immersion liquid and the sample medium. Such slab may induce a constant amount of SA that does not depend on the focusing depth. This SA can be compensated statically either with the correction collar, or with a proper index-matching immersion medium. Therefore it is not necessary to consider it in the calculations.
  17. The highly corrected objectives are equipped with a correction collar to allow adjustment of the central lens group position to coincide with fluctuations in cover-glass thickness.
  18. C. J. R. Sheppard and C. J. Cogswell, “Effects of aberrating layers and the tube length on confocal imaging properties,” Optik (Stuttg.) 87, 34–38 (1991).
  19. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12(2), 325–332 (1995). [CrossRef]
  20. V. N. Mahajan, “Gaussian apodization and beam propagation,” Prog. Opt. 49, 1–95 (2006). [CrossRef]
  21. I. Escobar, G. Saavedra, M. Martínez-Corral, and J. Lancis, “Reduction of the spherical aberration effect in high-numerical-aperture optical scanning instruments,” J. Opt. Soc. Am. A 23(12), 3150–3155 (2006). [CrossRef]
  22. J. Ojeda-Castaneda, J. E. A. Landgrave, and H. M. Escamilla, “Annular phase-only mask for high focal depth,” Opt. Lett. 30(13), 1647–1649 (2005). [CrossRef] [PubMed]
  23. D. D. Lowenthal, “Maréchal intensity criteria modified for Gaussian beams,” Appl. Opt. 13(9), 2126–2133 (1974). [CrossRef] [PubMed]
  24. M. Born, and E. Wolf, Principles of Optics. (University Press, Cambrigde) 1999, Ch 13.
  25. C. J. Cogswell, S. V. King, S. R. Prasanna Pavani, D. B. Conkey, and R. H. Cormack, “Microscope imaging capabilities improve using computational optics,” Proc. Focus on Microscopy 09 ( http://focusonmicroscopy.org/2009/PDF/341_Cogswell.pdf )
  26. S. V. King, A. R. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (7850 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited