OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13841–13850

Supercontinuum generation and pulse compression from gas filamentation of femtosecond laser pulses with different durations

Zhanxin Wang, Jiansheng Liu, Ruxin Li, and Zhizhan Xu  »View Author Affiliations


Optics Express, Vol. 17, Issue 16, pp. 13841-13850 (2009)
http://dx.doi.org/10.1364/OE.17.013841


View Full Text Article

Enhanced HTML    Acrobat PDF (468 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Self-compression and spectral supercontinuum (SC) generated by filamentation of femtosecond laser pulses with duration from 45 fs down to 6 fs in argon gas have been numerically investigated. A 45-fs pulse can be self-compressed into a few-cycle pulse with duration of 12 fs at the post-filamentation region. By properly employing a high-pass filter to select the broadening high-frequency spectra which are almost in phase, the pulse can be further shortened to about 7 fs. By contrast, a 6-fs pulse cannot be further self-compressed into a shorter pulse by filamentation although it can generate much broader SC extending from 200 nm to 1300 nm. It is also found that a separate and strong SC in the ultraviolet (UV) region extending from 220 nm to 300 nm and peaked at about 255nm can be generated at proper propagation distances, which corresponds to a pulse with duration of about 5 fs.

© 2009 OSA

OCIS Codes
(320.5520) Ultrafast optics : Pulse compression
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

History
Original Manuscript: June 10, 2009
Revised Manuscript: July 16, 2009
Manuscript Accepted: July 16, 2009
Published: July 24, 2009

Citation
Zhanxin Wang, Jiansheng Liu, Ruxin Li, and Zhizhan Xu, "Supercontinuum generation and pulse compression from gas filamentation of femtosecond laser pulses with different durations," Opt. Express 17, 13841-13850 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-13841


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001). [CrossRef] [PubMed]
  2. G. Sansone, E. Benedetti, F. Galegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2008). [CrossRef]
  3. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006). [CrossRef]
  4. O. G. Kosareva, N. A. Panov, D. S. Uryupina, M. V. Kurilova, A. V. Mazhorova, A. B. Savel’ev, R. V. Volkov, V. P. Kandidov, and S. L. Chin, “Optimization of a femtosecond pulse self-compression region along a filament in air,” Appl. Phys. B 91(1), 35–43 (2008). [CrossRef]
  5. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: A pressure dependence study,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(4), 4903–4910 (1998). [CrossRef]
  6. M. Nurhuada, A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “propagation dynamics of femtosecond laser pulses in argon,” Phys. Rev. A 66(2), 023811 (2002). [CrossRef]
  7. S. Champeaux and L. Bergé, “Femtosecond pulse compression in pressure-gas cells filled with argon,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6 Pt 2), 066603 (2003). [CrossRef]
  8. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004). [CrossRef]
  9. A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, and U. Keller, “Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient,” Opt. Lett. 30(19), 2657–2659 (2005). [CrossRef] [PubMed]
  10. X. Chen, X. Li, J. Liu, P. Wei, X. Ge, R. Li, and Z. Xu, “Generation of 5 fs, 0.7 mJ pulses at 1 kHz through cascade filamentation,” Opt. Lett. 32(16), 2402–2404 (2007). [CrossRef] [PubMed]
  11. G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31(2), 274–276 (2006). [CrossRef] [PubMed]
  12. A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, and A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53(1-2), 75–85 (2006). [CrossRef]
  13. S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5 Pt 2), 056604 (2006). [CrossRef]
  14. A. Mysyrowicz, A. Couairon, and U. Keller, “Self-compression of optical laser pulses by filamentation,” N. J. Phys. 10(2), 025023 (2008). [CrossRef]
  15. X. Chen, Y. Leng, J. Liu, Y. Zhu, R. Li, and Z. Xu, “Pulse self-compression in normally dispersive bulk media,” Opt. Commun. 259(1), 331–335 (2006). [CrossRef]
  16. S. Henz and J. Herrmann, “Self-channeling and pulse shortening of femtosecond pulses in multiphoton-ionized dispersive dielectric solids,” Phys. Rev. A 59(3), 2528–2531 (1999). [CrossRef]
  17. D. Faccio, A. Averchi, A. Lotti, M. Kolesik, J. V. Moloney, A. Couairon, and P. D. Trapani, “Generation and control of extreme blueshifted continuum peaks in optical Kerr media,” 78, 033825 (2008).
  18. L. Bergé and A. Couairon, “Gas-Induced Solitons,” Phys. Rev. Lett. 86(6), 1003–1006 (2000). [CrossRef]
  19. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84(16), 3582–3585 (2000). [CrossRef] [PubMed]
  20. H. Ward and L. Bergé, “Temporal shaping of femtosecond solitary pulses in photoionized media,” Phys. Rev. Lett. 90(5), 053901 (2003). [CrossRef] [PubMed]
  21. L. Bergé, “Self-compression of 2 microm laser filaments,” Opt. Express 16(26), 21529–21543 (2008). [CrossRef] [PubMed]
  22. L. Bergé, S. Skupin, and G. Steinmeyer, “Self-recompression of laser filaments exiting a gas cell,” Phys. Rev. A 79(3), 033838 (2008). [CrossRef]
  23. L. Bergé, S. Skupin, and G. Steinmeyer, “Temporal self-restoration of compressed optical filaments,” Phys. Rev. Lett. 101(21), 213901 (2008). [CrossRef] [PubMed]
  24. C. G. Durfee Iii, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves,” Opt. Lett. 22(20), 1565–1567 (1997). [CrossRef]
  25. C. G. Durfee Iii, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24(10), 697–699 (1999). [CrossRef]
  26. F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97(2), 023904 (2006). [CrossRef] [PubMed]
  27. L. Bergé and S. Skupin, “Sub-2 fs pulses generated by self-channeling in the deep ultraviolet,” Opt. Lett. 33(7), 750–752 (2008). [CrossRef] [PubMed]
  28. L. Bergé and S. Skupin, “Few-cycle light bullets created by femtosecond filaments,” Phys. Rev. Lett. 100(11), 113902 (2008). [CrossRef] [PubMed]
  29. Z. Wang, J. Liu, R. Li, and Z. Xu, “Spectral analysis and control to obtain sub-5 fs pulses by femtosecond filamentation,” Opt. Lett. 33(24), 2964–2966 (2008). [CrossRef] [PubMed]
  30. S. Trushin, S. Panja, K. Kosma, W. E. Schmid, and W. Fuß, “Supercontinuum extending from >1000 to 250 nm, generated by focusing ten-fs laser pulses at 805 nm into Ar,” Appl. Phys. B 80(4-5), 399–403 (2005). [CrossRef]
  31. N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloeme, “Extending the supercontinuum spectrum down to 200nm with few-cycle pulses,” N. J. Phys. 8(9), 177 (2006). [CrossRef]
  32. S. A. Trushin, K. Kosma, W. Fuss, and W. E. Schmid, “Sub-10-fs supercontinuum radiation generated by filamentation of few-cycle 800 nm pulses in argon,” Opt. Lett. 32(16), 2432–2434 (2007). [CrossRef] [PubMed]
  33. K. Kosma, S. A. Trushin, W. Fuß, and W. E. Schmid, “Characterization of supercontinuum radiation generated by self-focusing of few-cycle 800-nm pulses in Argon,” J. Mod. Opt. 55(13), 2141–2177 (2008). [CrossRef]
  34. T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000). [CrossRef]
  35. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. Lett. 92, 253901 (2004). [CrossRef] [PubMed]
  36. J. Liu, X. Chen, J. Liu, Y. Zhu, Y. Leng, J. Dai, R. Li, and Z. Xu, “Spectrum reshaping and pulse self-compression in normally dispersive media with negatively chirped femtosecond pulses,” Opt. Express 14(2), 979–987 (2006). [CrossRef] [PubMed]
  37. J. Liu, R. Li, and Z. Xu, “Few-cycle spatiotemporal soliton wave excited by filamentation of a femtosecond laser pulse in materials with anomalous dispersion,” Phys. Rev. A 74(4), 043801 (2006). [CrossRef]
  38. J. Liu, H. Schroeder, S. L. Chin, W. Yu, R. Li, and Z. Xu, “Space-frequency coupling, conical waves, and small-scale filamentation in water,” Phys. Rev. A 72(5), 053817 (2005). [CrossRef]
  39. L. Bergé and A. Couairon, “Nonlinear propagation of self-guided ultra-short pulses in ionized gases,” Phys. Plasmas 7(1), 210–231 (2000). [CrossRef]
  40. A. Dalgarno and A. E. Kingston, “The Refractive Indices and Verdet Constants of the Inert Gases,” Proc. R. Soc. Lond. A Math. Phys. Sci. 259(1298), 424–434 (1960). [CrossRef]
  41. J. W. Thomas, Numerical partial differential equations: finite difference methods (Springer-Verlag, New York, 1995), Chap. 4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited