OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13869–13874

Study of silicon nanofibrous structure formed by femtosecond laser irradiation in air

Sivakumar Manickam, Krishnan Venkatakrishnan, Bo Tan, and Venkat Venkataramanan  »View Author Affiliations


Optics Express, Vol. 17, Issue 16, pp. 13869-13874 (2009)
http://dx.doi.org/10.1364/OE.17.013869


View Full Text Article

Enhanced HTML    Acrobat PDF (393 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, we report first time the effect of laser pulse repetition frequency and pulse width of femtosecond laser radiation on silicon nanofibrous structure formation under ambient condition. Surface nanotexture analysis revealed the changes in fibrous structure density and size in respect of laser pulse width and repetition frequency. A phonon confinement model is used to explain the Raman spectra of processed specimens in order to understand the structure details of nanofibrous structure and hence to support the surface nanotexture analysis. The present investigation leads to a conclusion that nanofibrous structure is formed due to the aggregation of silicon nanoparticles and their size is estimated using the confinement model which is in the order of few nanometers.

© 2009 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.6000) Materials : Semiconductor materials
(160.4236) Materials : Nanomaterials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 13, 2009
Revised Manuscript: July 8, 2009
Manuscript Accepted: July 15, 2009
Published: July 27, 2009

Citation
Sivakumar Manickam, Krishnan Venkatakrishnan, Bo Tan, and Venkat Venkataramanan, "Study of silicon nanofibrous structure formed by femtosecond laser irradiation in air," Opt. Express 17, 13869-13874 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-13869


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Djurabekova, and K. Nordlund, "Atomistic simulation of the interface structure of Si nanocrystals embedded in amorphous silica," Phys. Rev. B 77(11), 115325 (2008). [CrossRef]
  2. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbé, and K. Chan, "A silicon nanocrystals based memory," Appl. Phys. Lett. 68(10), 1377-1379 (1996). [CrossRef]
  3. S. Prezioso, S. M. Hossain, A. Anopchenko, L. Pavesi, M. Wang, G. Pucker, and P. Bellutti, "Superlinear photovoltaic effect in Si nanocrystals based metal-insulator-semiconductor devices," Appl. Phys. Lett. 94(6), 062108 (2009). [CrossRef]
  4. T. Z. Lu, M. Alexe, R. Scholz, V. Talalaev, R. J. Zhang, and M. Zacharias, "Si nanocrystal based memories: Effect of the nanocrystal density," J. Appl. Phys. 100(1), 014310 (2006). [CrossRef]
  5. P. Alpuim, S. A. Filonovich, C. M. Costa, P. F. Rocha, M. I. Vasilevskiy, S. Lanceros-Mendez, C. Frias, A. T. Marques, R. Soares, and C. Costa, "Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon," J. Non-Cryst. Solids 354(19-25), 2585-2589 (2008). [CrossRef]
  6. I. Umezu, A. Sugimura, M. Inada, T. Makino, K. Matsumoto, and M. Takata, "Formation of nanoscale fine-structured silicon by pulsed laser ablation in hydrogen background gas," Physical Review B 76, - (2007). [CrossRef]
  7. B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, "Silicon surface morphologies after femtosecond laser irradiation," MRS Bull. 31, 626-633 (2006). [CrossRef]
  8. S. V. Zabotnov, L. A.  Golovan’, I. A.  Ostapenko, Y. V.  Ryabchikov, A. V.  Chervyakov, V. Y.  Timoshenko, P. K.  Kashkarov, and V. V.  Yakovlev, "Femtosecond nanostructuring of silicon surfaces," JETP Lett. 83(2), 69-71 (2006). [CrossRef]
  9. B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Applied Physics a-Materials Science & Processing 63, 109-115 (1996). [CrossRef]
  10. B. R. Tull, J. E. Carey, M. A. Sheehy, C. Friend, and E. Mazur, "Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas," Applied Physics a-Materials Science & Processing  83, 341-346 (2006). [CrossRef]
  11. M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, "Femtosecond laser-induced formation of submicrometer spikes on silicon in water," Appl. Phys. Lett. 85(23), 5694-5696 (2004). [CrossRef]
  12. M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, "Role of the background gas in the morphology and optical properties of laser-microstructured silicon," Chem. Mater. 17(14), 3582-3586 (2005).E [CrossRef]
  13. B. Tan, and K. Venkatakrishnan, "Synthesis of fibrous nanoparticle aggregates by femtosecond laser ablation in air," Opt. Express 17(2), 1064-1069 (2009). [CrossRef] [PubMed]
  14. S. T. Li, S. J. Silvers, and M. S. ElShall, "Surface oxidation and luminescence properties of weblike agglomeration of silicon nanocrystals produced by a laser vaporization-controlled condensation technique," J. Phys. Chem. B 101(10), 1794-1802 (1997). [CrossRef]
  15. S. Senadheera, B. Tan, and K. Venkatakrishnan, "Critical Time to Nucleation: Graphite and Silicon Nanoparticle Generation by Laser Ablation," Journal of Nanotechnology 6(2009).
  16. K. Arora, M. Rajalakshmi, and T. R. Ravindran, "Phonon Confinement in Nanostructured Materials," Encyclopedia of Nanoscience and Nanotechnology 8, 499-512 (2004).
  17. H. Richter, Z. P. Wang, and L. Ley, "The one phonon Raman spectrum in microcrystalline silicon," Solid State Commun. 39(5), 625-629 (1981). [CrossRef]
  18. J. Bonse, K. W. Brzezinka, and A. J. Meixner, "Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy," Appl. Surf. Sci. 221(1-4), 215-230 (2004). [CrossRef]
  19. R. Prabakaran, R. Kesavamoorthy, S. Amirthapandian, and A. Ramanand, "Raman scattering and photoluminescence studies on O+ implanted porous silicon," Mater. Lett. 58(29), 3745-3750 (2004). [CrossRef]
  20. Kailer, K. G. Nickel, and Y. G. Gogotsi, "Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations," Journal of Raman Spectroscopy 30(10), 939-937 (1999). [CrossRef]
  21. Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, "Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites," Phys. Rev. B 48(4), 2827-2830 (1993). [CrossRef]
  22. De Wolf, and H. E. Maes, "Mechanical stress measurements using micro-Raman spectroscopy," Microsyst. Technol. 5(1), 13-17 (1998). [CrossRef]
  23. H. Campbell, and P. M. Fauchet, "The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors," Solid State Commun. 58(10), 739-741 (1986). [CrossRef]
  24. M. Yang, D. M. Huang, P. H. Hao, F. L. Zhang, X. Y. Hou, and X. Wang, "Study of the Raman Peak Shift and the Linewidth of Light-Emitting Porous Silicon," J. Appl. Phys. 75(1), 651-653 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited