OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13953–13958

The Plasmon-Forbidden Deep Sub-wavelength Transmission With The TE Polarization

Minfeng Chen and Hung-chun Chang  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 13953-13958 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (180 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



As is well-known, the sub-wavelength transmissions and field enhancement are related to the surface plasmon excitation. Here we demonstrate that in two-layer metallic gratings the deep sub-wavelength transmissions is supported with the TE polarization where the surface plasmon mode is forbidden. The new mechanism to the sub-wavelength transmission is discovered to be completely different from the findings in the literatures. we propose a simple resonance condition to classify the resonance types which are responsible for those sub-wavelength transmissions and confirm with numerical simulations. To give a complete explanation of underlying physics, we inspect the near-field phenomenon within the grating slits.

© 2009 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

Original Manuscript: May 29, 2009
Revised Manuscript: July 2, 2009
Manuscript Accepted: July 14, 2009
Published: August 3, 2009

Minfeng Chen and Hung-chun Chang, "The plasmon-forbidden deep sub-wavelength transmission with the TE polarization," Opt. Express 17, 13953-13958 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  2. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002). [CrossRef] [PubMed]
  3. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef] [PubMed]
  4. S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, “Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmon to waveguide transmission,” Appl. Phys. Lett. 85(9), 1472–1474 (2004). [CrossRef]
  5. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,” J. Opt. A 7, S159 (2005). [CrossRef]
  6. F. J. Garcia de Abajo, “Full transmission through perfect-conductor subwavelength hole arrays,” Rev. Mod. Phys. 79, 1267 (2007).
  7. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001). [CrossRef] [PubMed]
  8. S. Ramo, J. R. Whinnery, and T. V. Duzer, Fields and Waves in Communication Electronics (John Wiley & Sons, Inc., New York, 1994).
  9. R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, Heidelberg, New York, 1980).
  10. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999). [CrossRef]
  11. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63(3), 033107 (2001). [CrossRef]
  12. S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A 4, S154 (2003). [CrossRef]
  13. M. Chen, S. Lin, H. C. Chang, and A. S. P. Chang, “Physical origin of the resonant mode deep inside the stop band of a metallodielectric photonic crystal,” Phys. Rev. B 78(8), 085110 (2008). [CrossRef]
  14. A. S. P. Chang, Y. S. Kim, M. Chen, Z. P. Yang, J. A. Bur, S. Y. Lin, and K. M. Ho, “Visible three-dimensional metallic photonic crystal with non-localized propagating modes beyond waveguide cutoff,” Opt. Express 15(13), 8428–8437 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-8428 . [CrossRef] [PubMed]
  15. M. Fox, Optical Properties of Solids (Oxford Univ. Press, New York, 2006).
  16. A. Taflove, and S. C. Hagness, “Computational Electrodynamics: The Finite-Differece Time-Domain Method”, (Artech House, Boston/London, 2005).
  17. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled mode theory for Fano resonances in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003). [CrossRef]
  18. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited