OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13982–13988

Discrete Cylindrical Vector Beam Generation from an Array of Optical Fibers

R. Steven Kurti, Klaus Halterman, Ramesh K. Shori, and Michael J. Wardlaw  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 13982-13988 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (582 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel method is presented for the beam shaping of far field intensity distributions of coherently combined fiber arrays. The fibers are arranged uniformly on the perimeter of a circle, and the linearly polarized beams of equal shape are superimposed such that the far field pattern represents an effective radially polarized vector beam, or discrete cylindrical vector (DCV) beam. The DCV beam is produced by three or more beams that each individually have a varying polarization vector. The beams are appropriately distributed in the near field such that the far field intensity distribution has a central null. This result is in contrast to the situation of parallel linearly polarized beams, where the intensity peaks on axis.

© 2009 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(230.5440) Optical devices : Polarization-selective devices
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 8, 2009
Revised Manuscript: July 14, 2009
Manuscript Accepted: July 17, 2009
Published: July 28, 2009

R. S. Kurti, Klaus Halterman, Ramesh K. Shori, and Michael J. Wardlaw, "Discrete cylindrical vector beam generation from an array of optical fibers," Opt. Express 17, 13982-13988 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. M. Shay, “Theory of electronically phased coherent beam combination without a reference beam,” Opt. Express 14(25), 12188–12195 (2006). [CrossRef] [PubMed]
  2. H. Bruesselbach, D. C. Jones, M. S. Mangir, M. I. Minden, and J. L. Rogers, “Self-organized coherence in fiber laser arrays,” Opt. Lett. 30(11), 1339 (2005). [CrossRef] [PubMed]
  3. T. B. Simpson, F. Doft, P. R. Peterson, and A. Gavrielides, “Coherent combining of spectrally broadened fiber lasers,” Opt. Express 15(18), 11731–11740 (2007). [CrossRef] [PubMed]
  4. A. Shirakawa, T. Saitou, T. Sekiguchi, and K. Ueda, “Coherent addition of fiber lasers by use of a fiber coupler,” Opt. Express 10(21), 1167–1172 (2002). [PubMed]
  5. T. M. Shay, V. Benham, J. T. Baker, A. D. Sanchez, D. Pilkington, and C. A. Lu, “Self-Synchronous and Self-Referenced Coherent Beam Combination for Large Optical Arrays,” IEEE J. Sel. Top. Quantum Electron. 13(3), 480–486 (2007). [CrossRef]
  6. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322 (2000). [CrossRef]
  7. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007). [CrossRef] [PubMed]
  8. T. Moser, J. Balmer, D. Delbeke, P. Muys, S. Verstuyft, and R. Baets, “Intracavity generation of radially polarized CO2 laser beams based on a simple binary dielectric diffraction grating,” Appl. Opt. 45(33), 8517–8522 (2006). [CrossRef] [PubMed]
  9. N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A 22(5), 984 (2005). [CrossRef]
  10. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29(15), 2234 (1990). [CrossRef] [PubMed]
  11. A. V. Nesterov and V. G. Niziev, J. Phys. D Appl. Phys. 33(15), 1817–1822 (2000). [CrossRef]
  12. T. Hirayama, Y. Kozawa, T. Nakamura, and S. Sato, “Generation of a cylindrically symmetric, polarized laser beam with narrow linewidth and fine tunability,” Opt. Express 14(26), 12839–12845 (2006). [CrossRef] [PubMed]
  13. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002). [CrossRef]
  14. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31(14), 2151–2153 (2006). [CrossRef] [PubMed]
  15. T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005). [CrossRef]
  16. J. J. Wynne, “Generation of the rotationally symmetric TE01 and TM01 from a wavelength-tunable laser,” IEEE J. Quantum Electron. 10(2), 125–127 (1974). [CrossRef]
  17. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005). [CrossRef] [PubMed]
  18. Y. I. Salamin, “Fields of a radially polarized Gaussian laser beam beyond the paraxial approximation,” Opt. Lett. 31(17), 2619–2621 (2006). [CrossRef] [PubMed]
  19. I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2 kW, M2 < 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32(1), 47–49 (2007). [CrossRef]
  20. I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28(10), 807–809 (2003). [CrossRef] [PubMed]
  21. M. Roth, E. Wyss, H. Glur, and H. P. Weber, “Generation of radially polarized beams in a Nd:YAG laser with self-adaptive overcompensation of the thermal lens,” Opt. Lett. 30(13), 1665 (2005). [CrossRef] [PubMed]
  22. V. G. Niziev, A. V. Nestorov, and J. Phys D Appl. Phys. (Berl.) 32, 1455 (1999).
  23. M. Rioux, R. Tremblay, and P.-A. Belanger, “Linear, annular, and radial focusing with axicons and applications to laser machining,” Appl. Opt. 17(10), 1532 (1978). [CrossRef] [PubMed]
  24. Y. I. Salamin, “Mono-energetic GeV electrons from ionization in a radially polarized laser beam,” Opt. Lett. 32(1), 90–92 (2007). [CrossRef]
  25. S. M. Iftiquar and J. Opt, “A tunable doughnut laser beam for cold-atom experiments,” B: Quantum Semiclass. Opt. 5(1), 40–43 (2003). [CrossRef]
  26. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000). [CrossRef] [PubMed]
  27. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]
  28. T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002). [CrossRef]
  29. G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre?Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004). [CrossRef]
  30. J. L. Li, K. Ueda, M. Musha, A. Shirakawa, and L. X. Zhong, “Generation of radially polarized mode in Yb fiber laser by using a dual conical prism,” Opt. Lett. 31(20), 2969–2971 (2006). [CrossRef] [PubMed]
  31. D. J. Armstrong, M. C. Phillips, and A. V. Smith, “Generation of radially polarized beams with an image-rotating resonator,” Appl. Opt. 42(18), 3550–3554 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited