OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 14029–14052

Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea

Griet Neukermans, Kevin Ruddick, Emilien Bernard, Didier Ramon, Bouchra Nechad, and Pierre-Yves Deschamps  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 14029-14052 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1129 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Geostationary ocean colour sensors have not yet been launched into space, but are under consideration by a number of space agencies. This study provides a proof of concept for mapping of Total Suspended Matter (TSM) in turbid coastal waters from geostationary platforms with the existing SEVIRI (Spinning Enhanced Visible and InfraRed Imager) meteorological sensor on the METEOSAT Second Generation platform. Data are available in near real time every 15 minutes. SEVIRI lacks sufficient bands for chlorophyll remote sensing but its spectral resolution is sufficient for quantification of Total Suspended Matter (TSM) in turbid waters, using a single broad red band, combined with a suitable near infrared band. A test data set for mapping of TSM in the Southern North Sea was obtained covering 35 consecutive days from June 28 until July 31 2006. Atmospheric correction of SEVIRI images includes corrections for Rayleigh and aerosol scattering, absorption by atmospheric gases and atmospheric transmittances. The aerosol correction uses assumptions on the ratio of marine reflectances and aerosol reflectances in the red and near-infrared bands. A single band TSM retrieval algorithm, calibrated by nonlinear regression of seaborne measurements of TSM and marine reflectance was applied. The effect of the above assumptions on the uncertainty of the marine reflectance and TSM products was analysed. Results show that (1) mapping of TSM in the Southern North Sea is feasible with SEVIRI for turbid waters, though with considerable uncertainties in clearer waters, (2) TSM maps are well correlated with TSM maps obtained from MODIS AQUA and (3) during cloud-free days, high frequency dynamics of TSM are detected.

© 2009 Optical Society of America

OCIS Codes
(010.1285) Atmospheric and oceanic optics : Atmospheric correction
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote Sensing and Sensors

Original Manuscript: May 26, 2009
Revised Manuscript: July 17, 2009
Manuscript Accepted: July 17, 2009
Published: July 29, 2009

Griet Neukermans, Kevin Ruddick, Emilien Bernard, Didier Ramon, Bouchra Nechad, and Pierre-Yves Deschamps, "Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea," Opt. Express 17, 14029-14052 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. International Ocean Colour Coordinating Group (IOCCG), "Remote sensing of ocean colour in coastal, and other optically-complex waters," p. 140, IOCCG (2000).
  2. R. P. Stumpf, "Applications of satellite ocean color sensors for monitoring and predicting harmful algal blooms," Human and Ecological Risk Assessment 7,1363-1368 (2001). [CrossRef]
  3. K. Ruddick, G. Lacroix, C. Lancelot, B. Nechad, Y. Park, S. Peters, B. Van Mol, "Optical remote sensing of the North Sea," in Remote Sensing of the European Seas, V. Barale and M. Gade [eds.], (Springer-Verlag, 2008) p 79-90. [CrossRef]
  4. I. S. Robinson, D. Antoine, M. Darecki, P. Gorringe, L. Pettersson, K. Ruddick, R. Santoleri, H. Siegel, P. Vincent, M. R. Wernand, G. Westbrook, and G. Zibordi, "Remote sensing of shelf sea ecosystems: state of the art and perspectives," European Science Foundation Marine Board p. 60, (2008).
  5. G. Kang, S. Kang, S. Yong, J. Kim, Y. Chang, H. Youn, "Korea Geostationary Ocean Color Imager," IGARSS, IEEE (2004) p. 3261-3263.
  6. National Research Council, Earth Science andAapplications from Space: national imperatives for the next decade and beyond, (Natl. Acad. Sci. 2007).
  7. R. P. Stumpf and J. R. Pennock, "Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary," J. Geophysical Res. 94,14363-14371 (1989). [CrossRef]
  8. I. S. Robinson, Satellite Oceanography (Ellis Horwood Ltd., 1985).
  9. E. Wolanski and S. Spagnol, "Dynamics of the turbidity maximum in King Sound, tropical Western Australia," Estuar Coast Mar Sci 56,877-890 (2003).
  10. M. Fettweis, F. Francken, V. Pison, and D. Van Den Eynde, "Suspended particulate matter dynamics and aggregate sizes in a high turbidity area," Marine Geology 235,63-74 (2006). [CrossRef]
  11. W. Ebenhoeh, J. G. B. Bekker, and J. W. Baretta, "The primary production module in the marine ecosystem model ERSEM II, with emphasis on the light forcing," J. Sea Res. 38,173-193 (1997). [CrossRef]
  12. G. Lacroix, K. Ruddick, Y. Park, N. Gypens, and C. Lancelot, "Validation of the 3D biogeochemical model MIRO&CO with field nutrient and phytoplankton data and MERIS-derived surface chlorophyll a images," J. Mar. Syst. 64(1-4), 66-88 (2007). [CrossRef]
  13. J. Muller, "MSG Level 1.5 Image Data Format Description. EUMETSAT technical document number EUM/MSG/ICD/105," (2007), http://www.eumetsat.int/Home/Main/Publications/Technical_and_Scientific_Documentation/Technical_Notes/SP_1124282611560.
  14. Y. Govaerts and M. Cleric, "MSG-1/SEVIRI Solar Channels Calibration Commissioning Activity Report. EUMETSAT document number EUM/MSG/TEN/04/0024," (2004).
  15. D. Eisma, "The North Sea: an overview," Phil. Trans. R. Soc. Lond. B 316,461-485 (1987). [CrossRef]
  16. M. Fettweis, B. Nechad,  et al, "An estimate of the suspended particulate matter (SPM) transport in the southern North Sea using SeaWiFS images, in situ measurements and numerical model results," Continental Shelf Research 27,1568-1583 (2007). [CrossRef]
  17. L. Otto, J. T. F. Zimmerman,  et al., "Physical Oceanography of the North Sea," Netherlands J. Sea Res. 26,161-238 (1990). [CrossRef]
  18. M. Babin, D. Stramski,  et al, "Variations in the light absorption coefficients of phytoplankton, nonalgal particles and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. 108(C7), 3211 (2003), doi:10.1029/2001JC000882. [CrossRef]
  19. W. Van Raaphorst, C. J. M. Philippart,  et al, "Distribution of suspended particulate matter in the North Sea as inferred from NOAA/AVHRR reflectance images and in situ observations," J. Sea Res. 39,197-215 (1998). [CrossRef]
  20. R. Doerffer and J. Fischer, "Concentrations of chlorophyll, suspended matter, gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods," J. Geophys. Res. 99(C4), 7457-7466 (1994). [CrossRef]
  21. M. A. Eleveld, R. Pasterkamp, H. J. Van Der Woerd, "A survey of total suspended matter in the Southern North Sea based on 2001 SeaWiFS data," EARSeL e Proc. 3, 166-178 (2004).
  22. Y. Govaerts, S. Wagner, and M. Clerici, "SEVIRI native format pre-processing toolbox user’s guide," issue: SPT version 2.2 Doc No: EUM/OPS-MSG/TEN/03/0011 (2005).
  23. I. Reda and A. Andreas, "Solar position algorithm for solar radiation application," National Renewable Energy Laboratory (NREL), Technical report NREL/TP-560-34302 (2003).
  24. J. M. Nicolas, P.-Y. Deschamps, O. Hagolle., "Radiometric calibration of the visible and near-infrared bands of SEVIRI using Rayleigh scattering and sun-glint over oceans," Proceedings of the 3rd MSG RAO Workshop (ESA SP-619), 15 June 2006, Helsinki, Finland
  25. M. Viollier, D. Tanré, and P.Y. Deschamps, "An algorithm for remote sensing of water color from space," Boundary Layer Meteorology 18,247-267 (1980). [CrossRef]
  26. H. R. Gordon and M. Wang, "Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors," Appl. Opt. 33,7754-7763 (1994). [CrossRef] [PubMed]
  27. R. Frouin, M. Schwindling, and P. Y. Deschamps, "Spectral dependence of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications," J. Geophys. Res. 101(C6), 14361-14371 (1996). [CrossRef]
  28. E. F. Vermote, D. Tanre, J. L. Deuze, M.  Herman, and J. J. Morcette, "Second Simulation of the Satellite Signal in the Solar Spectrum,6S: an overview," IEEE Tran. Geoscie. Remote Sensing  35(3),675-686 (1997). [CrossRef]
  29. R. A. Mc Clatchey, R. W. Fenn, J. E. E. Selby, F. E. Volz, and J. S. Garing, "Optical properties of the Atmosphere," AFCRL-TR- 71-0279, Enviro. Research papers, No 354, L.G. HANCOM FIEL Bedford, Mass. U.S.A. (1971).
  30. J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, "A successive order of scattering code for solving the vector equation of transfer in the earths atmosphere with aerosols," J. Quant. Spectrosc. Radiat. Transfer 107,479-507 (2007). [CrossRef]
  31. E. P. Shettle and R. W. Fenn, "Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties," Air Force Geophysics Laboratory Environmental Research Papers No. 676, AFGL-TR-79-0214 (1979).
  32. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, "Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters," Appl. Opt. 39(6), 897-912 (2000). [CrossRef]
  33. K. Ruddick, V. De Cauwer, Y. Park, and G. Moore, "Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters," Limnol. Oceanogr. 51, 1167-1179, (2006). [CrossRef]
  34. B. Nechad, K. G. Ruddick, and Y. Park, "Calibration and validation of a generic multisensor algorithm for mapping of Total Suspended Matter in turbid waters," Subm. to Rem. Sens. Env.
  35. D. Eisma, "Supply and deposition of suspended matter in the North Sea," Spec. Publs int. Ass. Sediment 5,415-428 (1981).
  36. P. M. Holligan, T. Aarup, and S. B. Groom, "The North Sea satellite colour atlas," Continental Shelf Research 9,665-765 (1989). [CrossRef]
  37. K. Ruddick, G. Lacroix, Y. Park, V. Rousseau, V. De Cauwer, and S. Sterckx, "Overview of Ocean Colour: theoretical background, sensors and applicability for the detection and monitoring of harmful algae blooms (capabilities and limitations)," p. 331-383. Real-time coastal observing systems for marine ecosystem dynamics and harmful algal blooms. Oceanographic Methodology Series. (UNESCO Publishing, 2008).
  38. C. Mazeran and N. Meskini, "Mission Couleur de l’Océan Géostationaire: Charactérisation de la géométrie, gain en couverture, impact d’instabilites instrumentals," CNES-044-R650-RF-v1 ; 21 Octobre 2008 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1283 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited