OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 14075–14087

Direct evidence of tilted Bragg grating azimuthal radiation mode coupling mechanisms

Robert B. Walker, Stephen J. Mihailov, Dan Grobnic, Ping Lu, and Xiaoyi Bao  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 14075-14087 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (521 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A number of useful fiber optic devices depend on being able to predict and manipulate the radiation field emitted by tilted fiber Bragg gratings. Previously we demonstrated analytically the manner in which this radiation field is directionally dependent on the phase matching characteristics of a grating’s three-dimensional structure as well as the polarization dependent dipole response of the medium itself. In this paper, for the first time, experimental measurements of the out-tapped field are presented which clearly illustrate and confirm the existence of the predicted trends associated with each of these physical mechanisms. Using an infrared camera and commercially available beam profiling software, these findings were gathered from a number of tilted fiber Bragg gratings written with an ultraviolet excimer laser at a variety of blaze angles.

© 2009 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.1480) Optical devices : Bragg reflectors
(230.5440) Optical devices : Polarization-selective devices
(300.6190) Spectroscopy : Spectrometers
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(290.5855) Scattering : Scattering, polarization

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 26, 2009
Revised Manuscript: July 21, 2009
Manuscript Accepted: July 23, 2009
Published: July 29, 2009

Robert B. Walker, Stephen J. Mihailov, Dan Grobnic, Ping Lu, and Xiaoyi Bao, "Direct evidence of tilted Bragg grating azimuthal radiation mode coupling mechanisms," Opt. Express 17, 14075-14087 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978). [CrossRef]
  2. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibres by transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989). [CrossRef] [PubMed]
  3. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993). [CrossRef]
  4. K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990). [CrossRef]
  5. G. Meltz, and W. W. Morey, “Design and performance of bidirectional fiber Bragg grating taps,” Optical Fiber Communication Conference, 1991 Technical Digest Series 4, (Optical Society of America, Washington, DC, 1991), p. 44.
  6. T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13(2), 296–313 (1996). [CrossRef]
  7. P.-Y. Fonjallaz, H. G. Limberger, and R. P. Salathé, “Bragg gratings with efficient and wavelength-selective fiber out-coupling,” J. Lightwave Technol. 15(2), 371–376 (1997). [CrossRef]
  8. T. Erdogan, T. A. Strasser, and P. S. Westbrook, “In-line polarimeter using blazed fiber gratings,” IEEE Photon. Technol. Lett. 12(10), 1352–1354 (2000). [CrossRef]
  9. K. S. Lee and J. Y. Cho, “Polarization-mode coupling in birefringent fiber gratings,” J. Opt. Soc. Am. A 19(8), 1621–1631 (2002). [CrossRef]
  10. J. M. Battiato and R. K. Kostuk, “45° slanted fibre Bragg grating design with prism coupled holographic exposure,” Electron. Lett. 38(22), 1323–1324 (2002). [CrossRef]
  11. K. Zhou, A. G. Simpson, L. Zhang, and I. Bennion, “Side detection of strong radiation-mode out-coupling from blazed FBGs in single-mode and multimode fibers,” IEEE Photon. Technol. Lett. 15(7), 936–938 (2003). [CrossRef]
  12. R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29(2), 154–156 (1993). [CrossRef]
  13. S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: Application of a PDL equaliser,” IEE Proc., Optoelectron. 149(5–6), 211–216 (2002). [CrossRef]
  14. P. S. Westbrook, T. A. Strasser, and T. Erdogan, “Compact, in-line, all-fiber polarimeter using fiber gratings,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, Washington, DC, 2000), PD22, pp. 233–235.
  15. J. L. Wagener, T. A. Strasser, J. R. Pedrazzani, J. DeMarco, and D. J. DiGiovanni, “Fibre grating optical spectrum analyzer tap,” in the 23rd European Conference on Optical Communications, IEE Conference Publication 448/5, (Institution of Electrical Engineers, Stevenage, England, 1997), pp. 65–68.
  16. P. Jänes, J. Pejnefors, R. Vogt, M. A. Grishin, W. An, S. Helmfrid, B. Johansson, and B. Sahlgren, “A novel tunable ROADM concept based on tilted fiber Bragg gratings and MEMS technology,” in the 34th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, Piscataway, NJ, USA, 2008), paper Th2C3.
  17. C. Jáuregui, J. Miguel López-Higuera, and A. Quintela, “Interrogation of interferometric sensors with a tilted fiber Bragg grating,” Opt. Express 12(23), 5646–5654 (2004). [CrossRef] [PubMed]
  18. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25(4), 481–490 (2008). [CrossRef]
  19. J. Peupelmann, E. Krause, A. Bandemer, and C. Schäffer, “Fibre-polarimeter based on grating taps,” Electron. Lett. 38(21), 1248–1250 (2002). [CrossRef]
  20. R. B. Walker, S. J. Mihailov, P. Lu and D. Grobnic, “Optimizing grating based devices with the Volume Current Method,” paper 5577–35, presented at Photonics North 2004, Ottawa, Canada, 27–29 Sept. 2004.
  21. R. B. Walker, S. J. Mihailov, P. Lu, and D. Grobnic, “Shaping the radiation field of tilted fiber Bragg gratings,” J. Opt. Soc. Am. B 22(5), 962–975 (2005). [CrossRef]
  22. Y. Li, M. Froggatt, and T. Erdogan, “Volume Current Method for analysis of tilted fiber gratings,” J. Lightwave Technol. 19(10), 1580–1591 (2001). [CrossRef]
  23. Y. Li and T. G. Brown, “Radiation modes and tilted fiber gratings,” J. Opt. Soc. Am. B 23(8), 1544–1555 (2006). [CrossRef]
  24. M. Kuznetsov and H. A. Haus, “Radiation loss in Dielectric waveguide structures by the Volume Current Method,” IEEE J. Quantum Electron. QE-19(10), 1505–1514 (1983). [CrossRef]
  25. A. W. Snyder, “Radiation losses due to variations of radius on dielectric or optical fibers,” IEEE Trans. Microw. Theory Tech. MTT-18(9), 608–615 (1970). [CrossRef]
  26. M. J. Holmes, R. Kashyap, and R. Wyatt, “Physical properties of optical fiber sidetap grating filters: Free-Space Model,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1353–1365 (1999). [CrossRef]
  27. Y. Li, S. Wielandy, G. E. Carver, H. L. Durko, and P. S. Westbrook, “Influence of the longitudinal mode field in grating scattering from weakly guided optical fiber waveguides,” Opt. Lett. 29(7), 691–693 (2004). [CrossRef] [PubMed]
  28. Y. Li, S. Wielandy, G. E. Carver, P. I. Reyes, and P. S. Westbrook, “Scattering from nonuniform tilted fiber gratings,” Opt. Lett. 29(12), 1330–1332 (2004). [CrossRef] [PubMed]
  29. N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28(10), 789–791 (2003). [CrossRef] [PubMed]
  30. A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19(16), 1260–1262 (1994). [CrossRef] [PubMed]
  31. M. O. Berendt, A. Bjarklev, L. Grüner-Nielsen, and C. E. Soccolich, “Reduction of Bragg grating-induced coupling to cladding modes,” Fiber Integr. Opt. 18, 255–272 (1999). [CrossRef]
  32. L. Kotačka, J. Chauve and R. Kashyap, “Angular and azimuthal distribution of side scattered light from fiber Bragg gratings,” paper 5577–34, presented at Photonics North, Ottawa, Canada, 27–29 Sept. 2004.
  33. Fibercore datasheet. http://www.fibercore.com/uploaded_files/PS%20Fiber.pdf .
  34. P. Govind, Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley-Interscience, New York, 2002).
  35. M. Parent, J. Bures, S. Lacroix, and J. Lapierre, “Proprietes de polarisation des reflecteurs de Bragg induits par photosensibilite dans les fibres optiques monomodes,” Appl. Opt. 24(3), 354–357 (1985). [CrossRef] [PubMed]
  36. F. Ouellette, D. Gagnon, and M. Poirier, “Permanent photoinduced birefringence in a Ge-doped fiber,” Appl. Phys. Lett. 58(17), 1813–1815 (1991). [CrossRef]
  37. K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fiber: Application to external writing of rocking filters,” Electron. Lett. 27(17), 1548–1550 (1991). [CrossRef]
  38. J. Albert, B. Malo, D. C. Johnson, F. Bilodeau, K. O. Hill, J. L. Brebner, and G. Kajrys, “Dichroism in the absorption spectrum of photobleached ion-implanted silica,” Opt. Lett. 18(14), 1126–1128 (1993). [CrossRef] [PubMed]
  39. T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11(10), 2100–2105 (1994). [CrossRef]
  40. K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45 ° tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited