OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 14109–14114

Integrated magneto-optical traps on a chip using silicon pyramid structures

S. Pollock, J. P. Cotter, A. Laliotis, and E. A. Hinds  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 14109-14114 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (433 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have integrated magneto-optical traps (MOTs) into an atom chip by etching pyramids into a silicon wafer. These have been used to trap atoms on the chip, directly from a room temperature vapor of rubidium. This new atom trapping method provides a simple way to integrate several atom sources on the same chip. It represents a substantial advance in atom chip technology and offers new possibilities for atom chip applications such as integrated single atom or photon sources and molecules on a chip.

© 2009 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(130.3120) Integrated optics : Integrated optics devices
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Atomic and Molecular Physics

Original Manuscript: July 2, 2009
Revised Manuscript: July 24, 2009
Manuscript Accepted: July 28, 2009
Published: July 29, 2009

S. Pollock, J. P. Cotter, A. Laliotis, and E. A. Hinds, "Integrated magneto-optical traps on a chip using silicon pyramid structures," Opt. Express 17, 14109-14114 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. Hinds and I. G. Hughes, "A pyramidal magneto-optical trap as a source of slow atoms," J. Phys. D 18, R119-R146 (1999). [CrossRef]
  2. R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel, "Microscopic atom optics: from wires to an atom chip," Adv. Mol. Opt. Phys. 48, 263-356 (2002).
  3. J. Fortágh and C. Zimmermann, "Magnetic microtraps for ultracold atoms," Rev. Mod. Phys. 79, 235-289 (2007). [CrossRef]
  4. W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, "Bose-Einstein condensation on a microelectronic chip," Nature 413, 498-501 (2001). [CrossRef] [PubMed]
  5. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, "Bose-Einstein condensation in a surface microtrap," Phys. Rev. Lett. 87, 230,401 (2001). [CrossRef]
  6. C. D. J. Sinclair, E. A. Curtis, I. Llorente-Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, "Bose-Einstein Condensation on a permanent-magnet atom chip," Phys. Rev. A 72, 03,160(R) (2005). [CrossRef]
  7. J. Reichel, W. Hänsel, and T. W. Hänsch, "Atomic Micromanipulation with Magnetic Surface Traps," Phys. Rev. Lett. 83(17), 3398-3401 (1999). [CrossRef]
  8. A. Grabowski and T. Pfau, "A lattice of magneto-optical and magnetic traps for cold atoms," Eur. Phys. J. D 22, 347-354 (2003).
  9. M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," App. Phys. Lett. 88, 071,116 (2006).
  10. K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, "Single-beam atom trap in a pyramidal and conical hollow mirror," Opt. Lett. 21, 1177 (1996). [CrossRef]
  11. G. N. Lewis, Z. Moktdir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, "Fabrication of Magnetooptical Atom Traps on a Chip," J. MEMS 18, 347 (2009).
  12. A. S. Louro and J. R. Senna, "Real-time, in-situ microscopic observation of bubbles and roughening in KOH etching of silicon," in Micromachining and Microfabrication Process Technology VII (2001).
  13. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26(23), 1888-1890 (2001). [CrossRef]
  14. K. P. Larsen, J. Ravnkilde, and O. Hansen, "Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication," J. Micromech. Microeng. 15, 873-882 (2005). [CrossRef]
  15. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, "Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking," J. Phys. B 35(24), 5141-5151 (2002). [CrossRef]
  16. G. Ritt, G. Cennini, C. Geckeler, and M. Weitz, "Laser frequency offset locking using a side of filter technique," App. Phys. B 79, 363-365 (2004). [CrossRef]
  17. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, "Frequency-Stabilized Diode Laser with the Zeeman Shift in an Atomic Vapor," Appl. Opt. 37, 3295-3298 (1998). [CrossRef]
  18. K. Lindquist, M. Stephens, and C. Wieman, "Experimental and Theoretical-Study of the Vapor-Cell Zeeman Optical Trap," Phys. Rev. A 46(7), 4082-4090 (1992). [CrossRef] [PubMed]
  19. M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, "Atom Detection and Photon Production in a Scalable, Open, Optical Microcavity," Phys. Rev. Lett. 99, 063,601 (2007). [CrossRef]
  20. K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, "Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering," Rev. Mod. Phys. 78(2), 483 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited