OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 14121–14131

Design methodology for multi-pumped discrete Raman amplifiers: case-study employing photonic crystal fibers

C. E. S. Castellani, S. P. N. Cani, M. E. V. Segatto, M. J. Pontes, and M. A. Romero  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 14121-14131 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (821 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper proposes a new design methodology for discrete multi-pumped Raman amplifier. In a multi-objective optimization scenario, in a first step the whole solution-space is inspected by a CW analytical formulation. Then, the most promising solutions are fully investigated by a rigorous numerical treatment and the Raman amplification performance is thus determined by the combination of analytical and numerical approaches. As an application of our methodology we designed an photonic crystal fiber Raman amplifier configuration which provides low ripple, high gain, clear eye opening and a low power penalty. The amplifier configuration also enables to fully compensate the dispersion introduced by a 70-km singlemode fiber in a 10 Gbit/s system. We have successfully obtained a configuration with 8.5 dB average gain over the C-band and 0.71 dB ripple with almost zero eye-penalty using only two pump lasers with relatively low pump power.

© 2009 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2330) Fiber optics and optical communications : Fiber optics communications

ToC Category:
Photonic Crystal Fibers

Original Manuscript: April 2, 2009
Revised Manuscript: July 3, 2009
Manuscript Accepted: July 22, 2009
Published: July 30, 2009

C. E. S. Castellani, S. P. N. Cani, M. E. Segatto, M. J. Pontes, and M. A. Romero, "Design methodology for multi-pumped discrete Raman amplifiers: case-study employing photonic crystal fibers," Opt. Express 17, 14121-14131 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Headley, and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (San Diego, CA, Academic Press, 2005).
  2. P. B. Hansen, G. Jacobovitz-Veselka, L. Gruner-Nielsen, and A. J. Stentz, "Raman amplification for loss compensation in dispersion compensating fiber modules," Electron. Lett. 34, 1136-1137 (1998). [CrossRef]
  3. B. J. Mangan, F. Couny, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, M. Banham, M. W. Mason, D. F. Murphy, E. A. M. Brown, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, "Slope-matched dispersion-compensating photonic crystal fiber," in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CPDD3. [PubMed]
  4. Z. Yusoff, J. H. Lee, W. Belarti, T. M. Monro, P. C. The, and D. J. Richardson, "Raman effects in a highly nonlinear holey fiber: amplification and modulation," Opt. Lett. 27, 424-426 (2002). [CrossRef]
  5. K. Digweed-Lyytikainen, C. A. De Francisco, D. Spadoti, A. A. Juriollo, J. B. Rosolem, J. B. M. Ayres Neto, B. V. Borges, J. Canning, and M. A. Romero. "Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment," Microwave Opt. Technol. Lett. 49, 872-874 (2007). [CrossRef]
  6. S. P. N Cani, C. A deFrancisco, D. H Spadoti, V. E. Nascimento, B. H. V Borges, L. C. Calmon, and M. A. Romero, "Requirements for efficient Raman amplification and dispersion compensation using microstructured optical fibers," Fiber Integ. Opt. 26, 255-270 (2007). [CrossRef]
  7. J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fukai, T. Matsui, and I. Sankawa, "Progress on low loss photonic crystal fibers," Opt. Fiber Technol. 11, 101-110 (2005). [CrossRef]
  8. K. Nakajima, C. Fukai, K. Kurokawa, K. Tajima, T. Matsui, and I. Sankawa, "Raman amplification characteristics at 850 nm in a silica-based photonic crystal fiber," IEEE Photon. Technol. Lett. 18, 451-453 (2006). [CrossRef]
  9. D. Mongardien, S. Borne, G. Melin, A. Fleureau, S. Lempereur, E. Burov, S. Maerten, C. Simonneau, and J. P. Hamaide, 2006, "10 Gbs/s WDM operation of a lumped Raman fiber amplifier using highly non-linear Ge-doped photonic crystal fiber," in Proceedings of the European Conference on Optical Communications (ECOC´06), (Cannes, France, 2006), paper PD Th4.2.6.
  10. S. P. Cani, M. Freitas, R. T. Almeida, and L. C. Calmon, "Raman amplifier performance of dispersion compensating fibers," in Proceedings of SBMO/IEEE MTT-S International Microwave and Optoeletronics Conference (IMOC 2003), (Iguazu Falls, Brazil, 2003), pp. 553-558.
  11. P. C. Xiao, Q. J. Zeng, J. Huang, and J. M. Liu, "A new optimal algorithm for multipump sources of distributed fiber Raman amplifier," IEEE Photon. Technol. Lett. 15, 206-208 (2003). [CrossRef]
  12. M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, "Automatic design scheme for optical fibre Raman amplifiers backward-pumped with multiple laser diode pumps," IEEE Photon. Technol. Lett. 13, 948-950 (2001). [CrossRef]
  13. X. Zhou, C. Lu, P. Shum, and T. H. Cheng, "A simplified model and optimal design of a multiwavelength backward pumped fiber Raman amplifier," IEEE Photon. Technol. Lett. 13, 945-947 (2001). [CrossRef]
  14. B. Neto, A. L. J. Teixeira, N. Wada, and P. S. Andre, "Efficient use of hybrid Genetic Algorithms in the gain optimization of distributed Raman amplifiers," Opt. Express 15, 17520-17528 (2008). [CrossRef]
  15. S. P. Cani, L. C. Calmon, M. J. Pontes, M. R. N. Ribeiro, M. E. V. Segatto, and A.V. T. Cartaxo, "An analytical approximated solution for the gain of broadband Raman amplifiers with multiple counter-pumps," J. Lightwave Technol. 27, 944-951 (2009). [CrossRef]
  16. P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny,  and et al., "Control of dispersion in photonic crystal fibers," J. Opt. Fiber Commun. 2, 435-461, (2005). [CrossRef]
  17. S. K. Varshney, K. Saitoh, M. Koshiba, and P. J. Roberts, "Analysis of a realistic and idealized dispersion-compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007). [CrossRef]
  18. K. Tajima, J. Zhou, K. Nakajima, and K. Sato, "Ultralow loss and long length photonic crystal fiber," J. Lightwave Technol. 22, 7-9 (2004). [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, USA, 3rd edition, 2001), Chap.8.
  20. D. Dahan and G. Eisenstein, "Numerical comparision between distributed and discrete amplification in a point-to-point 40 Gbit/s 40-WDM-based transmission system with three different modulation formats," J. Lightwave Technol. 20, 379-388 (2002). [CrossRef]
  21. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier," IEEE Photon. Technol. Lett. 11, 530-532 (1999). [CrossRef]
  22. M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, "Analysis of a multiple-pump Raman amplifier," Appl. Phys. Lett. 78, 1322-1324 (2001). [CrossRef]
  23. Y. Aoki, "Properties of fiber Raman amplifiers and their applicability to digital optical communication systems," J. Lightwave Technol. 6, 1225-1239 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited