OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 14180–14185

Validation of a Hartmann-Moiré Wavefront Sensor with Large Dynamic Range

Xin Wei, Tony Van Heugten, and Larry Thibos  »View Author Affiliations


Optics Express, Vol. 17, Issue 16, pp. 14180-14185 (2009)
http://dx.doi.org/10.1364/OE.17.014180


View Full Text Article

Enhanced HTML    Acrobat PDF (361 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Purpose: Our goal was to validate the accuracy, repeatability, sensitivity, and dynamic range of a Hartmann-Moiré (HM) wavefront sensor (PixelOptics, Inc.) designed for ophthalmic applications. Methods: Testing apparatus injected a 4 mm diameter monochromatic (532 nm) beam of light into the wavefront sensor for measurment. Controlled amounts of defocus and astigmatism were introduced into the beam with calibrated spherical (-20D to + 18D) and cylindrical (-8D to + 8D) lenses. Repeatability was assessed with three repeated measurements within a 2-minute period. Results: Correlation coefficients between mean wavefront measurements (n = 3) and expected wavefront vergence for both sphere and cylinder lenses were >0.999. For spherical lenses, the sensor was accurate to within 0.1D over the range from -20D to + 18D. For cylindrical lenses, the sensor was accurate to within 0.1D over the range from -8D to + 8D. The primary limitation to demonstrating an even larger dynamic range was the increasingly critical requirements for optical alignment. Sensitivity to small changes of vergence was constant over the instrument′s full dynamic range. Repeatability of measurements for fixed condition was within 0.01D. Conclusion: The Hartmann-Moiré wavefront sensor measures defocus and astigmatism accurately and repeatedly with good sensitivity over a large dynamic range required for ophthalmic applications.

© 2009 OSA

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.7325) Vision, color, and visual optics : Visual optics, metrology

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: June 2, 2009
Revised Manuscript: July 24, 2009
Manuscript Accepted: July 26, 2009
Published: August 3, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Xin Wei, Tony Van Heugten, and Larry Thibos, "Validation of a Hartmann-Moiré wavefront sensor with large dynamic range," Opt. Express 17, 14180-14185 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-14180


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994). [CrossRef]
  2. X. Hong, L. N. Thibos, A. Bradley, R. L. Woods, and R. A. Applegate, “Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 15–25 (2003). [CrossRef] [PubMed]
  3. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18(8), 1793–1803 (2001). [CrossRef]
  4. J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002). [CrossRef] [PubMed]
  5. L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22(5), 427–433 (2002). [CrossRef] [PubMed]
  6. F. Zhou, X. Hong, D. T. Miller, L. N. Thibos, and A. Bradley, “Validation of a combined corneal topographer and aberrometer based on Shack-Hartmann wave-front sensing,” J. Opt. Soc. Am. A 21(5), 683–696 (2004). [CrossRef]
  7. M. P. Paquin, H. Hamam, and P. Simonet, “Objective measurement of optical aberrations in myopic eyes,” Optom. Vis. Sci. 79(5), 285–291 (2002). [CrossRef] [PubMed]
  8. S. A. Klein, “Optimal corneal ablation for eyes with arbitrary Hartmann-Shack aberrations,” J. Opt. Soc. Am. A 15(9), 2580–2588 (1998). [CrossRef]
  9. X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vis. Sci. 80(1), 43–49 (2003). [CrossRef] [PubMed]
  10. J. Marsack, T. Milner, G. Rylander, N. Leach, and A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002). [PubMed]
  11. S. Pantanelli, S. MacRae, T. M. Jeong, and G. Yoon, “Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor,” Ophthalmology 114(11), 2013–2021 (2007). [CrossRef] [PubMed]
  12. L. N. Thibos and X. Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom. Vis. Sci. 76(12), 817–825 (1999). [CrossRef] [PubMed]
  13. K. Munson, X. Hong, and L. N. Thibos, “Use of a Shack-Hartmann aberrometer to assess the optical outcome of corneal transplantation in a keratoconic eye,” Optom. Vis. Sci. 78(12), 866–871 (2001). [CrossRef]
  14. Z. Z. Nagy, I. Palágyi-Deak, A. Kovács, E. Kelemen, and W. Förster, “First results with wavefront-guided photorefractive keratectomy for hyperopia,” J. Refract. Surg. 18(5), S620–S623 (2002). [PubMed]
  15. J. M. Miller, R. Anwaruddin, J. Straub, and J. Schwiegerling, “Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas,” J. Refract. Surg. 18(5), S579–S583 (2002). [PubMed]
  16. X. Hong and L. N. Thibos, “Longitudinal evaluation of optical aberrations following laser in situ keratomileusis surgery,” J. Refract. Surg. 16(5), S647–S650 (2000). [PubMed]
  17. Z. Z. Nagy, I. Palágyi-Deák, E. Kelemen, and A. Kovács, “Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism,” J. Refract. Surg. 18(5), S615–S619 (2002). [PubMed]
  18. N. López-Gil, J. F. Castejón-Mochón, A. Benito, J. M. Marín, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Château, and P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18(5), S603–S609 (2002). [PubMed]
  19. X. Hong, N. Himebaugh, and L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vis. Sci. 78(12), 872–880 (2001). [CrossRef]
  20. D. A. Atchison, D. H. Scott, and W. N. Charman, “Hartmann-Shack technique and refraction across the horizontal visual field,” J. Opt. Soc. Am. A 20(6), 965–973 (2003). [CrossRef]
  21. X. Wei and L. Thibos, “Modeling the eye’s optical system by ocular wavefront tomography,” Opt. Express 16(25), 20490–20502 (2008). [CrossRef] [PubMed]
  22. X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003). [CrossRef] [PubMed]
  23. G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11(3), 030502 (2006). [CrossRef]
  24. N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology 109(11), 1996–2003 (2002). [CrossRef] [PubMed]
  25. T. Van Heugten, and Y. Anthony, “Wavefront sensor,” US patent application No. 11/945,028 (2007).
  26. D. Malacara, “Hartmann, Hartmann Shack, and other screen tests” in Optical Shop Testing, 3rd ed. (Wiley-Interscience, 2007).
  27. R. V. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971).
  28. J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moire deflectograms,” Opt. Eng. 38(6), 974–982 (1999). [CrossRef]
  29. E. J. Sarver, T. Y. Van Heugten, T. D. Padrick, and M. T. Hall, “Astigmatic refraction using peaks of the interferogram Fourier transform for a Talbot Moiré interferometer,” J. Refract. Surg. 23(9), 972–977 (2007). [PubMed]
  30. D. R. Neal, D. M. Topa, and J. Copland, “The effects of lenslet resolution on the accuracy of ocular wavefront measurements,” SPIE Proc. 4245, 78–91 (2001). [CrossRef]
  31. G. Yoon, S. Pantanelli, and S. MacRae, 'Optimizing the Shack Hartmann wavefront sensor' in Wavefront Customized Visual Correction: The Quest Super Vision II (SLACK Inc., Thorofare, NJ, 2004).
  32. E. Keren and O. Kafri, “Diffraction effects in moire deflectometry,” J. Opt. Soc. Am. A 2(2), 111–120 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited