OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 14186–14198

Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors

Cheng-Yen Chen, Jyh-Yang Wang, Fu-Ji Tsai, Yen-Cheng Lu, Yean-Woei Kiang, and C. C. Yang  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 14186-14198 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (7311 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The fabrications of sphere-like Au nanoparticles (NPs) on sapphire, GaN, and SiO2 substrates through the irradiation of a few pulses of 266-nm laser onto Au thin films deposited on the substrates are demonstrated. The top-view diameter, contact angle on substrate, surface population density, and surface coverage percentage of the NPs can be controlled by the Au thin film thickness, laser energy density, substrate choice, and the gas or liquid, in which the Au thin film is immersed during laser irradiation. Optical transmission measurements show clear in-plane and out-of-plane localized surface plasmon resonance (LSPR) features, including the air resonance feature dictated by the gas or liquid immersing the NPs during transmission measurement, the in-plane substrate resonance feature controlled by the substrate material and the contact angle, and the out-of-plane resonance feature, which is strongly influenced also by the substrate material and the contact angle. Numerical simulations based on the finite-element method using the experimental parameters show highly consistent LSPR spectral positions and their variation trends. From the simulation results, one can also observe the relative importance between NP absorption and scattering in contributing to the extinction. This simple laser-irradiation method for fabricating sphere-like Au NPs of no aggregation and of strong adhesion to the substrate is useful for developing polarization-sensitive LSPR bio-sensing.

© 2009 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optics at Surfaces

Original Manuscript: June 16, 2009
Revised Manuscript: July 22, 2009
Manuscript Accepted: July 27, 2009
Published: August 3, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Cheng-Yen Chen, Jyh-Yang Wang, Fu-Ji Tsai, Yen-Cheng Lu, Yean-Woei Kiang, and C. C. Yang, "Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors," Opt. Express 17, 14186-14198 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277(5329), 1078–1081 (1997). [CrossRef] [PubMed]
  2. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002). [CrossRef] [PubMed]
  3. A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized surface plasmon resonance biosensor: first steps toward an assay for alzheimer's disease,” Nano Lett. 4(6), 1029–1034 (2004). [CrossRef]
  4. B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6(4), 662–668 (2006). [CrossRef] [PubMed]
  5. Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007). [CrossRef] [PubMed]
  6. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007). [CrossRef] [PubMed]
  7. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  8. Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997). [CrossRef]
  9. R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001). [CrossRef] [PubMed]
  10. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003). [CrossRef] [PubMed]
  11. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001). [CrossRef]
  12. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004). [CrossRef]
  13. M. Maillard, P. Huang, and L. Brus, “Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+],” Nano Lett. 3(11), 1611–1615 (2003). [CrossRef]
  14. R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003). [CrossRef] [PubMed]
  15. L. J. Sherry, R. C. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006). [CrossRef] [PubMed]
  16. A. V. Simakin, V. V. Voronov, G. A. Shafeev, R. Brayner, and F. Bozon-Verduraz, “Nanodisks of Au and Ag produced by laser ablation in liquid environment,” Chem. Phys. Lett. 348(3–4), 182–186 (2001). [CrossRef]
  17. A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, and J. Boneberg, “Jumping nanodroplets,” Science 309(5743), 2043–2045 (2005). [CrossRef] [PubMed]
  18. W. Huang, W. Qian, and M. A. El-Sayed, “Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses,” J. Appl. Phys. 98(11), 114301 (2005). [CrossRef]
  19. R. Sangiorgi, M. L. Muolo, D. Chatain, and N. Eustathopoulos, “Wettability and work of adhesion of nonreactive liquid metals on silica,” J. Am. Ceram. Soc. 71(9), 742–748 (1988). [CrossRef]
  20. F. Didier and J. Jupille, “The van der Waals contribution to the adhesion energy at metal-oxide interfaces,” Surf. Sci. 314(3), 378–384 (1994). [CrossRef]
  21. J. Bischof, D. Scherer, S. Herminghaus, and P. Leiderer, “Dewetting modes of thin metallic films: nucleation of holes and spinodal dewetting,” Phys. Rev. Lett. 77(8), 1536–1539 (1996). [CrossRef] [PubMed]
  22. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008). [CrossRef]
  23. E. D. Palik, Handbook of optical constants of solids II (Academic Press, Boston, 1991).
  24. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006). [CrossRef] [PubMed]
  25. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited