OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 14211–14228

Unraveling near-field origin of electromagnetic waves scattered from silver nanorod arrays using pseudo-spectral time-domain calculation

Bang-Yan Lin, Hui-Chen Hsu, Chun-Hao Teng, Hung-Chun Chang, Juen-Kai Wang, and Yuh-Lin Wang  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 14211-14228 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1746 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, we report the investigation of both near- and far-field electromagnetic characteristics of two-dimensional silver nanorod arrays embedded in anodic aluminum oxide with the use of a high-accuracy three-dimensional Legendre pseudospectral time-domain scheme. The simulated far-field scattering spectra agree with the experimental observations. We show that enhanced electric field is created between adjacent nanorods and, most importantly, far-field scattered light wave is mainly contributed from surface magnetic field, instead of the surface enhanced electric field. The identified near-field to far-field connection produces an important implication in the development of efficient surface-enhanced Raman scattering substrates.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.5850) Scattering : Scattering, particles
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

Original Manuscript: April 27, 2009
Revised Manuscript: July 7, 2009
Manuscript Accepted: July 13, 2009
Published: July 31, 2009

Bang-Yan Lin, Hui-Chen Hsu, Chun-Hao Teng, Hung-Chun Chang, Juen-Kai Wang, and Yuh-Lin Wang, "Unraveling near-field origin of electromagnetic waves scattered from silver nanorod arrays using pseudo-spectral time-domain calculation," Opt. Express 17, 14211-14228 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98,011101-011110 (2005). [CrossRef]
  2. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv. Mater. 18, 491-495 (2006), and references therein. [CrossRef]
  3. T.-T. Liu, Y.-H. Lin, C.-S. Hung, T.-J. Liu, Y. Chen, Y.-C. Huang, T.-H. Tsai, H.-H. Wang, D.-W. Wang, J.-K. Wang, Y.-L. Wang, and C.-H. Lin, "A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall," PloS One (in press).
  4. S. Biring, H.-H. Wang, J.-K. Wang, and Y.-L. Wang, "Light scattering from 2D arrays of monodispersed Ag nanoparticles separated by tunable nano-gaps: spectral evolution and analytical analysis of plasmonic coupling," Opt. Express 16,15312-15324 (2008). [CrossRef] [PubMed]
  5. Y. C. Chang, J. Y. Chu, T. J. Wang, M. W. Lin, J. T. Yeh, and J.-K. Wang, "Fourier analysis of surface plasmon waves launched from single nanohole and nanohole arrays: unraveling tip-induced effects," Opt. Express 16, 740-747 (2008). [CrossRef] [PubMed]
  6. J. Zhao, A. O. Pinchuk, J. M. McMahon, A. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, "Methods for describing the electromagnetic properties of silver and gold Nanoparticles," Acc. Chem. Res. 41, 1710-1720 (2008). [CrossRef] [PubMed]
  7. B. T. Draine and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A 11, 1491-1499 (1994). [CrossRef]
  8. A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (Artech House, Boston, 2005).
  9. G. Mie, "Contributions to the optics of turbid media, especially colloidal metal solutions," Ann. Phys. 25, 377-445, (1908). [CrossRef]
  10. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  11. S. S. Zivanovic, K. S. Yee, and K. K. Mei, "A subgridding method for the time-domain finite-difference method to solve Maxwell’s equations," IEEE Trans. Microwave Theory Tech. 39, 471-479 (1991). [CrossRef]
  12. H. O. Kreiss and J. Oliger, "Comparison of accurate methods for the integration of hyperbolic equations.Tellus,"  24, 199-215 (1972).
  13. T. Yamaguchi and T. Hinata, "Optical near-field analysis of spherical metals: application of the FDTD method combined with the ADE method," Opt. Express 15, 11481-11491 (2007). [CrossRef] [PubMed]
  14. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy," Chem. Phys. Lett. 318, 131-136 (2000). [CrossRef]
  15. E. Fort and S. Grésillon, "Surface enhanced fluorescence," J. Phys. D 41, 013001:1-31 (2008). [CrossRef]
  16. X. Ji, W. Cai, and P. Zhang, "High-order DGTD methods for dispersive Maxwell’s equations and modelling of silver nanowire couping," Int. J. Numer. Meth. Engng. 69, 308-325 (2007). [CrossRef]
  17. C.-H. Teng, B.-Y. Lin, H.-C. Chang, H.-C. Hsu, C.-N. Lin, and K.-A. Feng, "A Legendre Pseudospectral Penalty Scheme for Solving Time-Domain Maxwell’s Equations," J. Sci. Comput. 36,351-390 (2008). [CrossRef]
  18. D. W. Lynch and W. R. Hunter, "Silver (Ag)" in Handbook of optical constants of solids, E. D. Palik, ed. (Academic Press, Orlando, 1985), pp. 350-357.
  19. D. W. Thompson, "Optical characterization of porous alumina from vacuum ultraviolet to midinfrared," J. Appl. Phys. 97, 113511:1-9 (2005). [CrossRef]
  20. J. L. Young and R. O. Nelson, "A summary and systematic analysis of FDTD algorithms for linearly dispersive media," IEEE Antennas Propag. Mag. 43,61-77 (2001). [CrossRef]
  21. M. H. Carpenter and C. A. Kennedy, "Fourth order 2N-storage Runge-Kutta scheme," NASA-TM-109112 (1994).
  22. M. H. Carpenter and D. Gottlieb and S. Abarbanel, and W. S. Don, "The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: A careful study of the boundary error," SIAM J. Sci. Comp. 16,1241-1252 (1995). [CrossRef]
  23. S. Abarbenel and D. Gottlieb, "On the construction and analysis of absorbing layer in CEM," Appl. Numer. Math. 27,331-340 (1998). [CrossRef]
  24. S. Abarbenel and D. Gottlieb, and J. S. Hesthaven, "Well-posed perfectly matched layers for advective acoustics," J. Comput. Phys. 154,266-283 (1999). [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999), pp. 724-726.
  26. S. R. Rengarajan and Y. Rahmat-Samii, "The field equivalence principle illustration of the establishment of the non-intuitive null fields," IEEE Antennas Propagat. Mag.,  42, 122-128 (2000). [CrossRef]
  27. R. S. Elliott, Antenna theory and design (Prentice-Hall, New Jersey, 1981), pp. 114-117.
  28. M. Pelton, J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser & Photon. Rev. 2, 136-159 (2008). [CrossRef]
  29. E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimmers," J. Chem. Phys. 120, 357-366 (2004). [CrossRef] [PubMed]
  30. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408:1-7 (2006).
  31. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005). [CrossRef]
  32. T. Setälä, M. Kaivola, and A. T. Friberg, "Evanescent and propagating electromagnetic fields in scattering from point-dipole structures," J. Opt. Soc. Am. A 18, 678-688 (2001). [CrossRef]
  33. E. Wolf and J. T. Foley, "Do evanescent waves contribute to the far field?" Opt. Lett. 23, 16-18 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited