OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 14270–14280

The role of short and long range surface plasmons for plasmonic focusing applications

Avner Yanai and Uriel Levy  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 14270-14280 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (519 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and analyze a new plasmonic lens allowing the simultaneous focusing of both short and long range surface plasmons polaritons. The considered geometry is circularly symmetric and the SPP excitation is radially polarized. The long range and the short range modes are compared and found to have very different focusing properties. The trade-offs between the modes are discussed. The interplay between these two modes is used to demonstrate a practical focusing scenario providing a smaller spot size compared with previous version of plasmonic lenses, and a large depth of focus simultaneously.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.2790) Thin films : Guided waves
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: May 21, 2009
Revised Manuscript: July 5, 2009
Manuscript Accepted: July 5, 2009
Published: July 31, 2009

Avner Yanai and Uriel Levy, "The role of short and long range surface plasmons for plasmonic focusing applications," Opt. Express 17, 14270-14280 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005). [CrossRef] [PubMed]
  2. W. Srituravanich, L. Pan, Y. Wang, C. Sun, C. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nature Nanotech. 3, 733 - 737 (2008). [CrossRef]
  3. Q. Zhan, "Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam," Opt. Lett. 31, 1726-1728 (2006). [CrossRef] [PubMed]
  4. A. Yanai and U. Levy, "Plasmonic focusing with a coaxial structure illuminated by radially polarized light," Opt. Express 17, 924-932 (2009). [CrossRef] [PubMed]
  5. W. Chen and Q. Zhan, "Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam," Opt. Lett. 34, 722-724 (2009). [CrossRef] [PubMed]
  6. G. Lerman, A. Yanai and U. Levy, "Demonstration of nano focusing by the use of plasmonic lens illuminated with radially polarized light," Nano Lett. 9, 2139-2143 (2009). [CrossRef] [PubMed]
  7. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  8. D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981). [CrossRef]
  9. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000). [CrossRef]
  10. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Express 13, 977-984 (2005). [CrossRef] [PubMed]
  11. A. Degiron and D. Smith, "Numerical simulations of long-range plasmons," Opt. Express 14, 1611-1625 (2006). [CrossRef] [PubMed]
  12. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, "Long-range surface plasmon polariton nanowire waveguides for device applications," Opt. Express 14, 314-319 (2006). [CrossRef] [PubMed]
  13. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  14. D. K. Gramotnev and K. C. Vernon, "Adiabatic nano-focusing of plasmons by sharp metallic wedges," Appl. Phys.B Lasers Opt. 86, 7-17 (2007).
  15. D. Gramotnev, M. Vogel, and M. Stockman, "Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods," J. Appl. Phys. 104, 034311 (2008). [CrossRef]
  16. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon-polaritons," Phys. Rev. Lett. 100, 023901-1-4 (2008). [CrossRef] [PubMed]
  17. K. Kurihara, K. Yamamoto, J. Takahara and A. Otomo,"Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables," J. Phys. A Math.Theor. 41295401 (2008). [CrossRef]
  18. E. Verhagen, A. Polman, and L. Kuipers, "Nanofocusing in laterally taperd plasmonic waveguides," Opt. Express 16, 45-57 (2008). [CrossRef] [PubMed]
  19. L. Feng, D. Van Orden, M. Abashin, Q. Wang, Y. Chen, V. Lomakin, and Y. Fainman, "Nanoscale optical field localization by resonantly focused plasmons," Opt. Express 17, 4824-4832 (2009). [CrossRef] [PubMed]
  20. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31, 2972-2974 (2006). [CrossRef] [PubMed]
  21. http://ab-initio.mit.edu/meep/

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited