OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 14444–14457

Generation of two-mode squeezed and entangled light in a single temporal and spatial mode

W. Wasilewski, T. Fernholz, K. Jensen, L. S. Madsen, H. Krauter, C. Muschik, and E. S. Polzik  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 14444-14457 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyse a novel squeezing and entangling mechanism which is due to correlated Stokes and anti-Stokes photon forward scattering in a multi-level atom vapour. We develop a full quantum model for an alkali atomic vapour including quantized collective atomic states which predicts high degree of squeezing for attainable experimental conditions. Following the proposal we present an experimental demonstration of 3.5 dB pulsed frequency nondegenerate squeezed (quadrature entangled) state of light using room temperature caesium vapour. The source is very robust and requires only a few milliwatts of laser power. The squeezed state is generated in the same spatial mode as the local oscillator and in a single temporal mode. The two entangled modes are separated by twice the Zeeman frequency of the vapour which can be widely tuned. The narrow-band squeezed light generated near an atomic resonance can be directly used for atom-based quantum information protocols. Its single temporal mode characteristics make it a promising resource for quantum information processing.

© 2009 Optical Society of America

OCIS Codes
(190.5650) Nonlinear optics : Raman effect
(270.6570) Quantum optics : Squeezed states
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: July 1, 2009
Revised Manuscript: July 28, 2009
Manuscript Accepted: July 30, 2009
Published: July 31, 2009

W. Wasilewski, T. Fernholz, K. Jensen, L. S. Madsen, H. Krauter, C. Muschik, and E. S. Polzik, "Generation of two-mode squeezed and entangled light in a single temporal and spatial mode," Opt. Express 17, 14444-14457 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. C. Ralph, \Continuous variable quantum cryptography," Phys. Rev. A 61, 010303R (1999). [CrossRef]
  2. A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, \Unconditional Quantum Teleportation," Science 282, 706 (1998). [CrossRef] [PubMed]
  3. S. Lloyd and S. L. Braunstein, \Quantum Computation over Continuous Variables," Phys. Rev. Lett. 82, 1784{1787 (1999). [CrossRef]
  4. A. Kuzmich, L. Mandel, and N. P. Bigelow, \Generation of Spin Squeezing via Continuous Quan- tum Nondemolition Measurement," Phys. Rev. Lett. 85, 1594 (2000). [CrossRef] [PubMed]
  5. S. L. Braunstein, \Quantum error correction for communication with linear optics," Nature (London) 394, 47 (1998). [CrossRef]
  6. S. Lloyd and J.-J. E. Slotine, \Analog Quantum Error Correction,"Phys. Rev. Lett. 80, 4088{4091 (1998). [CrossRef]
  7. L.-M. Duan, J. I. Cirac, P. Zoller, and E. S. Polzik, \Quantum Communication between Atomic Ensembles Using Coherent Light," Phys. Rev. Lett. 85, 5643 (2000). [CrossRef]
  8. D. E. Browne, J. Eisert, S. Scheel, and M. B. Plenio, \Driving non-Gaussian to Gaussian states with linear optics," Phys. Rev. A 67, 062320 (2003). [CrossRef]
  9. Z. Ou, S. Pereira, H. Kimble, and K. C. Peng, \Realization of the Einten-Podolsy-rosen Paradox for Continuous Variables," Phys. Rev. Lett. 68, 3663 (1992). [CrossRef] [PubMed]
  10. C. Schori, J. L. S¿rensen, and E. S. Polzik, \Narrow-band frequency tunable light source of continuous quadrature entanglement," Phys. Rev. A 66, 033802 (2002). [CrossRef]
  11. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. G. ler, K. Danz- mann, and R. Schnabel, \Observation of Squeezed Light with 10-dB Quantum-Noise Reduction," Phys. Rev. Lett. 100, 033602 (2008). [CrossRef] [PubMed]
  12. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, \Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity," Phys. Rev. Lett. 55, 2409 (1985). [CrossRef] [PubMed]
  13. A. Lambrecht, T. Coudreau, A. M. Steinberg, and E. Giacobino, \Squeezing with cold atoms," Europhys. Lett. 36, 93{98 (1996). [CrossRef]
  14. V. Josse, A. Dantan, A. Bramati, M. Pinard, and E. Giacobino,\Continuous variable entanglement using cold atoms," Phys. Rev. Lett. 92, 123601 (2004). [CrossRef] [PubMed]
  15. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, \Entangled Images from Four-Wave Mixing," Science 321, 544{547 (2008). [CrossRef] [PubMed]
  16. J. Ries, B. Brezger, and A. I. Lvovsky, \Experimental Vacuum Squeezing in Rubidium Vapor via Self-Rotation," Phys. Rev. A 68, 025801 (2003). [CrossRef]
  17. E. E. Mikhailov and I. Novikova, \Low-frequency vacuum squeezing via polarization self-rotation in Rb vapor," Opt. Lett. 33, 1213{1215 (2008). [CrossRef] [PubMed]
  18. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, \Generating Optical Schrodinger Kittens for Quantum Information Processing," Science 312, 83{86 (2006). [CrossRef] [PubMed]
  19. J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. M. lmer, and E. S. Polzik, \Generation of a Superposition of Odd Photon Number States for Quantum Information Networks," Phys. Rev. Lett. 97, 083604 (pages 4) (2006). [CrossRef] [PubMed]
  20. M. Sasaki and S. Suzuki, \Multimode theory of measurement-induced non-Gaussian operation on wideband squeezed light: Analytical formula," Phys. Rev. A 73, 043807 (pages 18) (2006). [CrossRef]
  21. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, \Long-distance quantum communication with atomic ensembles and linear optics," Nature (London) 414, 413 (2001). [CrossRef] [PubMed]
  22. D. V. Kupriyanov, O. S. Mishina, I. M. Sokolov, B. Julsgaard, and E. S. Polzik, \Multimode entanglement of light and atomic ensembles via o®-resonant coherent forward scattering," Phys. Rev. A 71, 032348 (2005). [CrossRef]
  23. O. Mishina, D. Kuprianov, and E. S. Polzik, \Macroscopic quantum information channel via the polarization-sensitive interaction between the light and spin subsystems," in NATO Advanced research workshop: Quantum information processing from theory to experiment, vol. 199, p. 346 (2006).
  24. J. Sherson, B. Julsgaard, and E. S. Polzik, Advances in Atomic, Molecular, and Optical Physics, chap. Deterministic atom-light quantum interface (2006).
  25. B. Julsgaard, A. Kozhekin, and E. S. Polzik,\Experimental long-lived entanglement of two macro- scopic objects," Nature (London) 413, 400 (2001). [CrossRef] [PubMed]
  26. K. Hammerer, A. Sorensen, and E. Polzik, \Quantum interface between light and atomic ensembles," arXiv:0807.3358v3, http://arxiv.org/abs/0807.3358.
  27. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, \Experimental demonstration of quantum memory for light," Nature (London) 432, 482{486 (2004). [CrossRef] [PubMed]
  28. J. F. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard, K. Hammerer, I. Cirac, and E. S. Polzik, \Quantum teleportation between light and matter," Nature (London) 443, 557{560 (2006). [CrossRef] [PubMed]
  29. L.-M. Duan, G. Giedke, I. Cirac and P. Zoller, \Inseparability Criterion for Continuous Variable Systems," Phys. Rev. Lett.,  84, 2722-2725 (2000). [CrossRef] [PubMed]
  30. T. Opatrny, N. Korolkova, and G. Leuchs, \Mode structure and photon number correlations in squeezed quantum pulses," Phys. Rev. A 66, 53813 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited