OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14526–14533

Polarization shaping in the mid-IR and polarization-based balanced heterodyne detection with application to 2D IR spectroscopy

Chris T. Middleton, David B. Strasfeld, and Martin T. Zanni  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 14526-14533 (2009)
http://dx.doi.org/10.1364/OE.17.014526


View Full Text Article

Enhanced HTML    Acrobat PDF (897 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate amplitude, phase and polarization shaping of femtosecond mid-IR pulses using a germanium acousto-optical modulator by independently shaping the frequency-dependent amplitudes and phases of two orthogonally polarized pulses which are then collinearly overlapped using a wire-grid polarizer. We use a feedback loop to set and stabilize the relative phase of the orthogonal pulses. We have also used a wire-grid polarizer to implement polarization-based balanced heterodyne detection for improved signal-to-noise of 2D IR spectra collected in a pump-probe geometry. Applications include coherent control of molecular vibrations and improvements in multidimensional IR spectroscopy.

© 2009 OSA

OCIS Codes
(300.6290) Spectroscopy : Spectroscopy, four-wave mixing
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.5540) Ultrafast optics : Pulse shaping
(320.7080) Ultrafast optics : Ultrafast devices

ToC Category:
Spectroscopy

History
Original Manuscript: June 15, 2009
Revised Manuscript: July 16, 2009
Manuscript Accepted: July 17, 2009
Published: August 3, 2009

Citation
Chris T. Middleton, David B. Strasfeld, and Martin T. Zanni, "Polarization shaping in the mid-IR and polarization-based balanced heterodyne detection with application to 2D IR spectroscopy," Opt. Express 17, 14526-14533 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-14526


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009). [CrossRef] [PubMed]
  2. D. B. Strasfeld, Y. L. Ling, S.-H. Shim, and M. T. Zanni, “Tracking fiber formation in human islet amyloid polypeptide with automated 2D-IR spectroscopy,” J. Am. Chem. Soc. 130(21), 6698–6699 (2008). [CrossRef] [PubMed]
  3. S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14197–14202 (2007). [CrossRef] [PubMed]
  4. T. Hornung, J. C. Vaughan, T. Feurer, and K. A. Nelson, “Degenerate four-wave mixing spectroscopy based on two-dimensional femtosecond pulse shaping,” Opt. Lett. 29(17), 2052–2054 (2004). [CrossRef] [PubMed]
  5. J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16(22), 17420–17428 (2008). [CrossRef] [PubMed]
  6. E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping Technology,” Opt. Express 15(25), 16681–16689 (2007). [CrossRef] [PubMed]
  7. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300(5625), 1553–1555 (2003). [CrossRef] [PubMed]
  8. J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, “Coherently controlled ultrafast four-wave mixing spectroscopy,” J. Phys. Chem. A 111(23), 4873–4883 (2007). [CrossRef] [PubMed]
  9. D. B. Strasfeld, S.-H. Shim, and M. T. Zanni, “Controlling vibrational excitation with shaped mid-IR pulses,” Phys. Rev. Lett. 99(3), 038102–038104 (2007). [CrossRef] [PubMed]
  10. D. B. Strasfeld, C. T. Middleton, and M. T. Zanni, “Mode Selectivity with Polarization Shaping in the Mid-IR,” N. J. Phys. (to be published).
  11. T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26(8), 557–559 (2001). [CrossRef]
  12. S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett. 31(6), 838–840 (2006). [CrossRef] [PubMed]
  13. M. Plewicki, S. M. Weber, F. Weise, and A. Lindinger, “Independent control over the amplitude, phase, and polarization of femtosecond pulses,” Appl. Phys. B 86(2), 259–263 (2007). [CrossRef]
  14. M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, “Phase, amplitude, and polarization shaping with a pulse shaper in a Mach-Zehnder interferometer,” Appl. Opt. 45(32), 8354–8359 (2006). [CrossRef] [PubMed]
  15. E. C. Fulmer, P. Mukherjee, A. T. Krummel, and M. T. Zanni, “A pulse sequence for directly measuring the anharmonicities of coupled vibrations: Two-quantum two-dimensional infrared spectroscopy,” J. Chem. Phys. 120(17), 8067–8078 (2004). [CrossRef] [PubMed]
  16. M. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11265–11270 (2001). [CrossRef] [PubMed]
  17. D. Abramavicius and S. Mukamel, “Coherent third-order spectroscopic probes of molecular chirality,” J. Chem. Phys. 122(13), 134305–134321 (2005). [CrossRef] [PubMed]
  18. J.-H. Choi and M. Cho, “Two-dimensional circularly polarized IR photon echo spectroscopy of polypeptides: four-wave-mixing optical activity measurement,” J. Phys. Chem. A 111(24), 5176–5184 (2007). [CrossRef] [PubMed]
  19. M. T. Zanni, S. Gnanakaran, J. Stenger, and R. M. Hochstrasser, “Heterodyned Two-Dimensional Infrared Spectroscopy of Solvent-Dependent Conformations of Acetylproline-NH2,” J. Phys. Chem. B 105(28), 6520–6535 (2001). [CrossRef]
  20. W. Xiong and M. T. Zanni, “Signal enhancement and background cancellation in collinear two-dimensional spectroscopies,” Opt. Lett. 33(12), 1371–1373 (2008). [CrossRef] [PubMed]
  21. K.-X. Sun, E. K. Gustafson, M. M. Fejer, and R. L. Byer, “Polarization-based balanced heterodyne detection method in a Sagnac interferometer for precision phase measurement,” Opt. Lett. 22(17), 1359–1361 (1997). [CrossRef]
  22. K. Wynne, J. J. Carey, J. Zawadzka, and D. A. Jaroszynski, “Tunneling of single-cycle terahertz pulses through waveguides,” Opt. Commun. 176(4-6), 429–435 (2000). [CrossRef]
  23. F. Ding, P. Mukherjee, and M. T. Zanni, “Passively correcting phase drift in two-dimensional infrared spectroscopy,” Opt. Lett. 31(19), 2918–2920 (2006). [CrossRef] [PubMed]
  24. V. Volkov, R. Schanz, and P. Hamm, “Active phase stabilization in Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 30(15), 2010–2012 (2005). [CrossRef] [PubMed]
  25. M. Ninck, A. Galler, T. Feurer, and T. Brixner, “Programmable common-path vector field synthesizer for femtosecond pulses,” Opt. Lett. 32(23), 3379–3381 (2007). [CrossRef] [PubMed]
  26. D. Kupka, P. Schlup, and R. A. Bartels, “Simplified ultrafast pulse shaper for tailored polarization states using a birefringent prism,” Rev. Sci. Instrum. 80(5), 053110–053118 (2009). [CrossRef] [PubMed]
  27. D. Voronine, D. Abramavicius, and S. Mukamel, “Coherent control of pump-probe signals of helical structures by adaptive pulse polarizations,” J. Chem. Phys. 124(3), 034104–034112 (2006). [CrossRef] [PubMed]
  28. D. V. Voronine, D. Abramavicius, and S. Mukamel, “Manipulating multidimensional electronic spectra of excitons by polarization pulse shaping,” J. Chem. Phys. 126(4), 044508–044508 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited