OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14543–14551

High Quality Planar Silicon Nitride Microdisk Resonators for Integrated Photonics in the VisibleWavelength Range

Ehsan Shah Hosseini, Siva Yegnanarayanan, Amir Hossein Atabaki, Mohammad Soltani, and Ali Adibi  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 14543-14551 (2009)
http://dx.doi.org/10.1364/OE.17.014543


View Full Text Article

Enhanced HTML    Acrobat PDF (1332 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High quality factor (Q≈3.4×106) microdisk resonators are demonstrated in a Si3N4 on SiO2 platform at 652–660 nm with integrated in-plane coupling waveguides. Critical coupling to several radial modes is demonstrated using a rib-like structure with a thin Si3N4 layer at the air-substrate interface to improve the coupling.

© 2009 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

History
Original Manuscript: June 15, 2009
Revised Manuscript: July 23, 2009
Manuscript Accepted: July 23, 2009
Published: August 3, 2009

Citation
Ehsan Shah Hosseini, Siva Yegnanarayanan, Amir H. Atabaki, Mohammad Soltani, and Ali Adibi, "High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range," Opt. Express 17, 14543-14551 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-14543


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425(6961), 944-947 (2003). [CrossRef]
  2. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041,112 (2006). [CrossRef]
  3. T. Barwicz, M. Popovi?, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, "Microring-resonator-based add-drop filters in SiN: fabrication and analysis," Opt. Express 12, 1437-1442 (2004). [CrossRef] [PubMed]
  4. P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber coupled high-Q SiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131,108 (2006). [CrossRef]
  5. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003). [CrossRef] [PubMed]
  6. M. Borselli, T. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005). [CrossRef] [PubMed]
  7. M. Soltani, S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics," Opt. Express 15, 4694-4704 (2007). [CrossRef] [PubMed]
  8. C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999). [CrossRef]
  9. D. L. Jeanmarie and R. P. Van Duyne, "Surface Raman Spectroelectrochemistry.1. Heterocyclic, Aromatic, And Aliphatic-Amines Adsorbed On Anodized Silver Electrode," J. Electroanal. Chem. 84, 1-20 (1977). [CrossRef]
  10. Z. Lai, Y. Wang, N. Allbritton, G.-P. Li, and M. Bachman, "Label-free biosensor by protein grating coupler on planar optical waveguides," Opt. Lett. 33, 1735-1737 (2008). [CrossRef] [PubMed]
  11. J. Campbell, Introduction to Remote Sensing (The Guilford Press, 2006).
  12. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzó, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000). [CrossRef] [PubMed]
  13. D. Klunder, F. Tan, T. van der Veen, H. Bulthuis, G. Sengo, B. Docter, H. Hokstra, and A. Driessen, "Experimental and numerical study of SiON microresonators with air and polymer cladding," J. Lightwave Technol. 21, 1099-1110 (2003). [CrossRef]
  14. N. Ma, C. Li, and A. Poon, "Laterally coupled hexagonal micropillar resonator add-drop filters in silicon nitride," IEEE Photonics Technol. Lett 16, 2487-2489 (2004). [CrossRef]
  15. S. Zheng, H. Chen, and A. Poon, "Microring-resonator cross-connect filters in silicon nitride: rib waveguide dimensions dependence," IEEE J. Sel. Top. Quantum Electron. 12, 1380-1387 (2006). [CrossRef]
  16. A. Schweinsberg, S. Hocdé, N. Lepeshkin, R. Boyd, C. Chase, and J. Fajardo, "An environmental sensor based on an integrated optical whispering gallery mode disk resonator," Sens. Actuators B. Chemical 123, 727-732 (2007). [CrossRef]
  17. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, "Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides," Opt. Express 16, 12,987-12,994 (2008). [CrossRef]
  18. A. Gondarenko, J. S. Levy, and M. Lipson, "High confinement micron-scale silicon nitride high Q ring resonator," Opt. Express 17, 11,366-11,370 (2009). [CrossRef]
  19. E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett. 27, 512-514 (2002). [CrossRef]
  20. M. Charlton and G. Parker, "Nanofabrication of advanced waveguide structures incorporating a visible photonic band gap," J. Micromech. Microeng. 8(2), 172-176 (1998). [CrossRef]
  21. M. C. Netti, M. D. B. Charlton, G. J. Parker, and J. J. Baumberg, "Visible photonic band gap engineering in silicon nitride waveguides," Appl. Phys. Lett. 76, 991-993 (2000). [CrossRef]
  22. J. Baumberg, N. Perney, M. Netti, M. Charlton, M. Zoorob, and G. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004). [CrossRef]
  23. M. Charlton, M. Zoorob, M. Netti, N. Perney, G. Parker, P. Ayliffe, and J. Baumberg, "Realisation of ultra-low loss photonic crystal slab waveguide devices," Microelectron. J. 36, 277-281 (2005). [CrossRef]
  24. K. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115,126 (2006). [CrossRef]
  25. M. Barth, J. Kouba, J. Stingl, B. Lchel, and O. Benson, "Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities," Opt. Express 15, 17,231-17,240 (2007). [CrossRef]
  26. E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores," Talanta 65, 1086-1090 (2005). [CrossRef]
  27. M. Madou, Fundamentals of microfabrication: the science of miniaturization (CRC, 2002).
  28. D. Weiss, V. Sandoghdar, J. Hare, V. Lef’evre-Seguin, J. Raimond, and S. Haroche, "Splitting of high-Q Mie modes induced by light backscattering in silica microspheres," Opt. Lett. 20, 1835-1835 (1995). [CrossRef] [PubMed]
  29. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron Lett. 36, 321-322 (2000). [CrossRef]
  30. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2006).
  31. H. Haus, Waves and fields in optoelectronics (Prentice-Hall, 1984).
  32. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation (Cambridge University Press, 1999).
  33. M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, "Systematic Engineering ofWaveguide-Resonator Coupling for Silicon Microring/Microdisk/Racetrack Resonators: Theory and Experiment," submitted (2008).
  34. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, "Improvement of thermal properties of ultra-high Q silicon microdisk resonators," Opt. Express 15, 17,305-17,312 (2007). [CrossRef]
  35. S. Chuang, "A coupled mode formulation by reciprocity and a variational principle," J. Lightwave Technol. 5, 5-15 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited