OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14552–14557

Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors

Snjezana Tomljenovic-Hanic, Adel Rahmani, M. J. Steel, and C. Martijn de Sterke  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 14552-14557 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (326 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical cavities provide a route to sensing through the shift of the optical resonant peak. However, effective sensing with optical cavities requires the optimization of the modal quality factor, Q, and the field overlap with the sample, f. For a photonic crystal slab (PCS) this figure of merit, M = fQ, involves two competing effects. The air modes usually have large f but small Q, whereas the dielectric modes have high-Q and small f. We compare the sensitivity of air and dielectric modes for different PCS cavity designs and account for loss associated with absorption by the sensed sample or its host liquid. We find that optimizing Q at the expense of f is the most beneficial strategy, and modes deriving from the dielectric bands are thus preferred.

© 2009 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: June 16, 2009
Revised Manuscript: July 16, 2009
Manuscript Accepted: July 16, 2009
Published: August 3, 2009

Snjezana Tomljenovic-Hanic, Adel Rahmani, M. J. Steel, and C. Martijn de Sterke, "Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors," Opt. Express 17, 14552-14557 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  2. Optical microcavities, K. Vahala, ed. (World Scientific Publishing, 2004).
  3. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008). [CrossRef] [PubMed]
  4. I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(241104), 1–3 (2007). [CrossRef]
  5. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008). [CrossRef] [PubMed]
  6. F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16(2), 1062–1067 (2008). [CrossRef] [PubMed]
  7. H.-C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor - analysis for adsorption of rodlike bacteria,” Opt. Express 15(25), 17410–17423 (2007). [CrossRef] [PubMed]
  8. J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(141116), 1–3 (2007). [CrossRef]
  9. M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003). [CrossRef]
  10. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004). [CrossRef] [PubMed]
  11. A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, and P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett. 89(101102), 1–3 (2006). [CrossRef]
  12. N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008). [CrossRef]
  13. S.-H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16(16), 11709–11717 (2008). [CrossRef] [PubMed]
  14. D. F. Dofner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(181103), 1–3 (2008).
  15. F. Bordas, M. J. Steel, C. Seassal, and A. Rahmani, “Confinement of band-edge modes in a photonic crystal slab,” Opt. Express 15(17), 10890–10902 (2007). [CrossRef] [PubMed]
  16. F. Bordas, C. Seassal, E. Dupuy, P. Regreny, M. Gendry, P. Viktorovitch, M. J. Steel, and A. Rahmani, “Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 microm using cavity-confined slow light,” Opt. Express 17(7), 5439–5445 (2009). [CrossRef] [PubMed]
  17. S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14(25), 12451–12456 (2006). [CrossRef] [PubMed]
  18. C. L. C. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. C. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express 16(20), 15887–15896 (2008). [CrossRef] [PubMed]
  19. U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33(19), 2206–2208 (2008). [CrossRef] [PubMed]
  20. B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high-Q photonic double-heterostructure cavities,” N. J. Phys. 8(209), 1–12 (2006). [CrossRef]
  21. F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(211117), 1–3 (2006). [CrossRef]
  22. S. Tomljenovic-Hanic, A. D. Greentree, C. M. de Sterke, and S. Prawer, “Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs,” Opt. Express 17(8), 6465–6475 (2009). [CrossRef] [PubMed]
  23. T. Xu, M. S. Wheeler, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, “The influence of material absorption on the quality factor of photonic crystal cavities,” Opt. Express 17(10), 8343–8348 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited