OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14558–14566

Drop-in compatible entanglement for optical-fiber networks

Matthew A. Hall, Joseph B. Altepeter, and Prem Kumar  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 14558-14566 (2009)
http://dx.doi.org/10.1364/OE.17.014558


View Full Text Article

Enhanced HTML    Acrobat PDF (322 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A growing number of quantum communication protocols require entanglement distribution among remote parties, which is best accomplished by exploiting the mature technology and extensive infrastructure of low-loss optical fiber. For this reason, a practical source of entangled photons must be drop-in compatible with optical fiber networks. Here we demonstrate such a source for the first time, in which the nonlinearity of standard single-mode fiber is utilized to yield entangled photon pairs in the 1310-nm O-band. Using an ultra-stable design, we produce polarization entanglement with 98.0% ± 0.5% fidelity to a maximally entangled state as characterized via coincidence-basis tomography. To demonstrate the source’s drop-in capability, we transmit one photon from each entangled pair through a telecommunications-grade optical amplifier set to boost classical 1550-nm (C-band) communication signals. We verify that the photon pairs experience no measurable decoherence upon passing through the active amplifier (the output state’s fidelity with a maximally entangled state is 98.4% ± 1.4%).

© 2009 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics
(270.4180) Quantum optics : Multiphoton processes
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

History
Original Manuscript: June 19, 2009
Revised Manuscript: July 24, 2009
Manuscript Accepted: July 24, 2009
Published: August 3, 2009

Citation
Matthew A. Hall, Joseph B. Altepeter, and Prem Kumar, "Drop-in compatible entanglement 
for optical-fiber networks," Opt. Express 17, 14558-14566 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-14558


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M.A. Nielsen and I.L. Chuang I. Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2001). [CrossRef]
  3. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991). [CrossRef] [PubMed]
  4. K.-Y. Chen, T. Hogg, and R. Beausoleil, “A Quantum Treatment of Public Goods Economics,” Quantum Inf. Process. 1(6), 449–469 (2002). [CrossRef]
  5. S. C. Benjamin and P. M. Hayden, “Multiplayer quantum games,” Phys. Rev. A 64(3), 030301 (2001). [CrossRef]
  6. J. Eisert, M. Wilkens, and M. Lewenstein, “Quantum Games and Quantum Strategies,” Phys. Rev. Lett. 83(15), 3077–3080 (1999). [CrossRef]
  7. J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59(6), 4249–4254 (1999). [CrossRef]
  8. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995). [CrossRef] [PubMed]
  9. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999). [CrossRef]
  10. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64(2), 023802 (2001). [CrossRef]
  11. Y. H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, “Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A 63(6), 062301 (2001). [CrossRef]
  12. Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66(3), 033816 (2002). [CrossRef]
  13. G. Bitton, W. P. Grice, J. Moreau, and L. Zhang, “Cascaded ultrabright source of polarization-entangled photons,” Phys. Rev. A 65(6), 063805 (2002). [CrossRef]
  14. M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69(4), 041801 (2003). [CrossRef]
  15. B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004). [CrossRef]
  16. M. Fiorentino, C. E. Kuklewicz, and F. N. C. Wong, “Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones,” Opt. Express 13(1), 127–135 (2005). [CrossRef] [PubMed]
  17. J. Altepeter, E. Jeffrey, and P. Kwiat, “Phase-compensated ultra-bright source of entangled photons,” Opt. Express 13(22), 8951–8959 (2005). [CrossRef] [PubMed]
  18. J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76(4), 043836 (2007). [CrossRef]
  19. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99(12), 120501 (2007). [CrossRef] [PubMed]
  20. N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005). [CrossRef]
  21. E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in Erbium-doped single-mode fibers,” J. Lightwave Technol. 7(5), 835–845 (1989). [CrossRef]
  22. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm Telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005). [CrossRef] [PubMed]
  23. H. Takesua and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004). [CrossRef]
  24. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31(12), 1905–1907 (2006). [CrossRef] [PubMed]
  25. X. Li, C. Liang, K. Fook Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73(5), 052301 (2006). [CrossRef]
  26. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998). [CrossRef]
  27. X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30(10), 1201–1203 (2005). [CrossRef] [PubMed]
  28. C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” Optical Fiber Communications Conference (OFC’2006), paper PDP35.
  29. H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15(12), 7853–7862 (2007). [CrossRef] [PubMed]
  30. S. Sauge, M. Swillo, S. Albert-Seifried, G. B. Xavier, J. Waldebäck, M. Tengner, D. Ljunggren, and A. Karlsson, “Narrowband polarization-entangled photon pairs distributed over a WDM link for qubit networks,” Opt. Express 15(11), 6926–6933 (2007). [CrossRef] [PubMed]
  31. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15(21), 13957–13964 (2007). [CrossRef] [PubMed]
  32. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991). [CrossRef]
  33. C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, “Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications,” Opt. Express 14(15), 6936–6941 (2006). [CrossRef] [PubMed]
  34. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  35. J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Chap. 3: Photonic State Tomography,” Advances in AMO Physics, Vol. 52 (Elsevier, 2006).
  36. N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote State Preparation: Arbitrary Remote Control of Photon Polarization,” Phys. Rev. Lett. 94(15), 150502 (2005). [CrossRef] [PubMed]
  37. E. Desurvire, D. Bayart, B. Desthieux, and S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley-Interscience, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited