OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14586–14598

Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence

Ewold Verhagen, L. Kuipers, and Albert Polman  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 14586-14598 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (683 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Upconversion luminescence from erbium ions placed in the near field of subwavelength aperture arrays is used to investigate field enhancement of incident near-infrared light in such nanostructures. We study field enhancement due to the excitation of both propagating and localized surface plasmon resonances in arrays of square and annular apertures in a Au film. The conversion of 1480 nm excitation light to 980 nm emission is shown to be enhanced up to a factor 450 through a subwavelength hole array. The effects of array periodicity and aperture size are investigated. It is shown that a Fano model can describe both far-field transmission and near-field intensity. The upconversion enhancement reveals the wavelength and linewidth of the surface plasmon modes that are responsible for extraordinary transmission in such arrays. Angle-dependent measurements on annular aperture arrays prove that the field enhancement due to localized resonances is independent of the incident angle. These experiments provide insight in the mechanisms responsible for extraordinary transmission and are important for applications that aim to exploit near-field enhancement in nanostructured metal films.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(300.2530) Spectroscopy : Fluorescence, laser-induced
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: July 6, 2009
Revised Manuscript: July 29, 2009
Manuscript Accepted: July 30, 2009
Published: August 3, 2009

Ewold Verhagen, L. Kuipers, and Albert Polman, "Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence," Opt. Express 17, 14586-14598 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391(6668), 667-669 (1998).
  2. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445(7123), 39-46 (2007).
  3. F. J. García de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79(4) (2007).
  4. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-Enhanced Raman Scattering," Nano Lett. 4(10), 2015-2018 (2004).
  5. M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano, "Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays," Opt. Lett. 30(10), 1210-1212 (2005).
  6. Y. Liu and S. Blair, "Fluorescence enhancement from an array of subwavelength metal apertures," Opt. Lett. 28(7), 507-509 (2003).
  7. A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C.-W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, "Surface Plasmon-Quantum Dot Coupling from Arrays of Nanoholes," J. Phys. Chem. B 110(16), 8307-8313 (2006).
  8. M. Airola, Y. Liu, and S. Blair, "Second-harmonic generation from an array of sub-wavelength metal apertures," J. Opt. A: Pure Appl. Opt. 7(2), S118-S123 (2005).
  9. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, "Strong Modification of the Nonlinear Optical Response of Metallic Subwavelength Hole Arrays," Phys. Rev. Lett. 97(14), 146102 (2006).
  10. W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second Harmonic Generation from a Nanopatterned Isotropic Nonlinear Material," Nano Lett. 6(5), 1027-1030 (2006).
  11. W. Fan, S. Zhang, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Second harmonic generation from patterned GaAs inside a subwavelength metallic hole array," Opt. Express 14(21), 9570-9575 (2006).
  12. P. Lalanne, J. C. Rodier, and J. P. Hugonin, "Surface plasmons of metallic surfaces perforated by nanohole arrays," J. Opt. A: Pure Appl. Opt. 7(8), 422-426 (2005).
  13. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92(18), 183901 (2004).
  14. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Mart’?n-Moreno, "Transmission of Light through a Single Rectangular Hole," Phys. Rev. Lett. 95(10), 103901 (2005).
  15. F. I. Baida and D. Van Labeke, "Light transmission by subwavelength annular aperture arrays in metallic films," Opt. Commun. 209, 17-22 (2002).
  16. F. I. Baida and D. Van Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67(15), 155314 (2003).
  17. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays," Phys. Rev. Lett. 94(3), 033902 (2005).
  18. F. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands," Appl. Phys. B: Lasers Opt. 79(1), 1-8 (2004).
  19. S. M. Orbons and A. Roberts, "Resonance and extraordinary transmission in annular aperture arrays," Opt. Express 14(26), 12623-12628 (2006).
  20. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74(20) (2006).
  21. M. I. Haftel, C. Schlockermann, and G. Blumberg, "Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons," Phys. Rev. B 74(23) (2006).
  22. D. Van Labeke, D. Gérard, B. Guizal, F. I. Baida, and L. Li, "An angle-independent Frequency Selective Surface in the optical range," Opt. Express 14(25), 11945-11951 (2006).
  23. F. Auzel, "Upconversion and Anti-Stokes Processes with f and d Ions in Solids," Chem. Rev. 104(1), 139-174 (2004).
  24. G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, "Upconversion in Er-implanted Al2O3 waveguides," J. Appl. Phys. 79(3), 1258-1266 (1996).
  25. W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, "Very low threshold green lasing in microspheres by up-conversion of IR photons," J. Opt. B: Quantum Semiclassical Opt. 2(2), 204-206 (2000).
  26. E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, "Semiconductorlaser-pumped high-power upconversion laser," Appl. Phys. Lett. 88(6) (2006).
  27. T. Lu, L. Yang, R. V. A. van Loon, A. Polman, and K. J. Vahala, "On-chip green silica upconversion microlaser," Opt. Lett. 34(4), 482-484 (2009).
  28. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, "A Three-Color, Solid-State, Three-Dimensional Display," Science 273(5279), 1185-1189 (1996).
  29. S. F. Lim, R. Riehn, W. S. Ryu, N. Khanarian, C.-k. Tung, D. Tank, and R. H. Austin, "In Vivo and Scanning Electron Microscopy Imaging of Upconverting Nanophosphors in Caenorhabditis elegans," Nano Lett. 6(2), 169-174 (2006).
  30. T. Trupke, M. A. Green, and P. W¨urfel, "Improving solar cell efficiencies by up-conversion of sub-band-gap light," J. Appl. Phys. 92(7), 4117-4122 (2002).
  31. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, and F. Lederer, "On the use of localized plasmon polaritons in solar cells," Phys. Status Solidi A 205(12), 2844-2861 (2008).
  32. S. Baluschev, F. Yu, T. Miteva, S. Ahl, A. Yasuda, G. Nelles, W. Knoll, and G. Wegner, "Metal-Enhanced Up-Conversion Fluorescence: Effective Triplet-Triplet Annihilation near Silver Surface," Nano Lett. 5(12), 2482-2484 (2005).
  33. T. Aisaka, M. Fujii, and S. Hayashi, "Enhancement of upconversion luminescence of Er doped Al2O3v films by Ag island films," Appl. Phys. Lett. 92(13) (2008).
  34. V. K. Rai, L. de S. Menezes, C. B. de Araújo, L. R. P. Kassab, D. M. da Silva, and R.  A. Kobayashi, "Surface plasmon-enhanced frequency upconversion in Pr3+ doped tellurium-oxide glasses containing silver nanoparticles," J. Appl. Phys. 103(9) (2008).
  35. URL: www.srim.org.
  36. G. N. van den Hoven, E. Snoeks, A. Polman, J.W. M. van Uffelen, Y. S. Oei, and M. K. Smit, "Photoluminescence characterization of Er-implanted Al2O3 films," Appl. Phys. Lett. 62(24), 3065-3067 (1993).
  37. A. Moreau, G. Granet, F. Baida, and D. V. Labeke, "Light transmission by subwavelength square coaxial aperture arrays in metallic films," Opt. Express 11(10), 1131-1136 (2003).
  38. J. Kalkman, L. Kuipers, A. Polman, and H. Gersen, "Coupling of Er ions to surface plasmons on Ag," Appl. Phys. Lett. 86, 041113 (2005).
  39. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 (1998).
  40. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004). [PubMed]
  41. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85(19), 4316-4318 (2004).
  42. U. Fano, "Effects of Configuration Interaction on Intensities and Phase Shifts," Phys. Rev. 124(6), 1866-1878 (1961).
  43. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, "Role ofWood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes," Phys. Rev. B 67(8), 085415 (2003).
  44. C. Genet, M. P. van Exter, and J. P. Woerdman, "Fano-type interpretation of red shifts and red tails in hole array transmission spectra," Opt. Commun. 225, 331 - 336 (2003).
  45. H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66(7-8), 163-182 (1944).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited