OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14634–14648

General recipe for flatbands in photonic crystal waveguides

Omer Khayam and Henri Benisty  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 14634-14648 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (3621 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a general recipe for tailoring flat dispersion curves in photonic crystal waveguides. Our approach is based on the critical coupling criterion that equates the coupling strength of guided modes with their frequency spacing and results in a significant number of the modes lying collectively in the slow-light regime. We first describe the critical coupling scheme in photonic crystal waveguides using a simple coupled mode theory model. We also determine that canonical photonic crystal waveguides natively correspond to strongly coupled modes. Based on these analyses, our design recipe is as follows: Tune the profile of the first Fourier component of the waveguide periodic dielectric boundary to lower the coupling strength of the guided modes down to its critical value. We check that this generalized tuning may be accomplished by adjusting any desired optogeometric parameter such as hole size, position, index etc. We explore the validity of this general approach down to the narrow two-missing rows waveguides. The interest of this method is to circumvent most of the common trial-and-error procedures for flatband engineering.

© 2009 Optical Society of America

OCIS Codes
(260.2030) Physical optics : Dispersion
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

Original Manuscript: April 30, 2009
Revised Manuscript: May 22, 2009
Manuscript Accepted: May 23, 2009
Published: August 4, 2009

Omer Khayam and Henri Benisty, "General recipe for flatbands in photonic crystal waveguides," Opt. Express 17, 14634-14648 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kurt, H. Benisty, T. Melo, O. Khayam, and C. Cambournac, "Slow-light regime and critical coupling in highly multimode corrugated waveguides," J. Opt. Soc. B 25, C1-C14 (2008). [CrossRef]
  2. M. Povinelli, S. Johnson, and J. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 13, 7145 (2005). [CrossRef] [PubMed]
  3. T. Baba, "Slow light in photonic crystals," Nature Photon. 2, 465 (2008). [CrossRef]
  4. T. F. Krauss, "Slow light in photonic crystal waveguides," J. Phys. D: Appl. Phys. 40, 2666-2670 (2007). [CrossRef]
  5. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, and I. Yokoyama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  6. H. Gersen, T. J. Karle, J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005). [CrossRef] [PubMed]
  7. Y. A. Vlasov, M. O'Boyle, H. F. Hamman, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  8. A. Y. Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866-4868 (2004). [CrossRef]
  9. S. Kubo, D. Mori, and T. Baba, "Low-group-velocity and low-dispersion slow light in photonic crystal waveguides," Opt. Lett. 32, 2981-2983 (2007). [CrossRef] [PubMed]
  10. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, "Photonic crystal waveguides with semi-slow light and tailored dispersion properties," Opt. Express 14, 9444-9450 (2006). [CrossRef] [PubMed]
  11. J. Li, T. P. White, L. O'Faolain, A. Gomez-Iglesias, and T. F. Krauss, "Systematic design of flat band slow light in photonic crystal waveguides," Opt. Express 16, 6227-6232 (2008). [CrossRef] [PubMed]
  12. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, "Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration," Opt. Express 17, 1628-1635 (2009). [CrossRef] [PubMed]
  13. M. Mulot, A. Säynätjoki, S. Arpiainen, H. Lipsanen, and J. Ahopelto, "Slow light propagation in photonic crystal waveguides with ring-shaped holes," J. Opt. A: Pure Appl. Opt. 9, S415-S418 (2007). [CrossRef]
  14. Y. Hamachi, S. Kubo, and T. Baba, "Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide," Opt. Lett. 34, 1072-1074 (2009). [CrossRef] [PubMed]
  15. J. Ma and C. Jiang, "Demonstration of Ultraslow Modes in Asymmetric Line-Defect Photonic Crystal Waveguides," IEEE Photon. Technol. Lett. 20, 1237-1239 (2008). [CrossRef]
  16. T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, "Light Localizations in Photonic Crystal Line Defect Waveguides," IEEE J. Sel. Top. Quantum. Electron. 10, 484-491 (2004). [CrossRef]
  17. D. Mori and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13, 9398-9408 (2005). [CrossRef] [PubMed]
  18. D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," J. Quantum Electron. 33, 2038-2059 (1997). [CrossRef]
  19. O. Khayam, C. Cambournac, H. Benisty, M. Ayre, R. Brenot, G. H. Duan, and W. Pernice, "In-plane Littrow lasing of broad photonic crystal waveguides," App. Phys. Lett. 91, 041111 (2007). [CrossRef]
  20. S. Olivier, M. Rattier, H. Benisty, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, R. Houdré, and C. Weisbuch, "Mini stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal," Phys. Rev. B 63, 113311 (113311-113316) (2001). [CrossRef]
  21. H. Benisty, "Single-material coupling-tolerant semi-planar microresonator using Littrow diffraction," PNFA (2009).
  22. A. Yariv, "Coupled mode theory for guided wave optics," J. Quantum Electron. 9, 919-933 (1973). [CrossRef]
  23. H. Benisty, "Modal analysis of optical guides with two-dimensional photonic band-gap boundaries," J. Appl. Phys. 79, 7483-7492 (1996). [CrossRef]
  24. M. L. Cohen and T. K. Bergstresser, "Band Structures and Pseudopotential Form Factors for Fourteen Semiconductors of the Diamond and Zinc-blende Structures," Phys. Rev. 141, 556 (1966).
  25. O. Khayam, H. Benisty, and C. Cambournac, "Experimental observation of minigap stripes in periodically corrugated broad photonic wires," Phys. Rev. B 78, 153107 (2008). [CrossRef]
  26. W. T. Lau and S. Fan, "Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs," Appl. Phys. Lett. 81, 3915 (2002). [CrossRef]
  27. Y. A. Vlasov, N. Moll, and S. J. McNab, "Mode mixing in asymmetric double-trench photonic crystal waveguides," J. Appl. Phys. 95, 4538 (2004). [CrossRef]
  28. S. G. Johnson, M. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. Joannopoulos, "Roughness losses and volume-current methods in photonic-crystal waveguides," Appl. Phys. B 81, 283-293 (2005). [CrossRef]
  29. C. Vassallo, "About coupled-mode theories for dielectric waveguides," IEEE J. Lightwave Technol. 6, 294-303 (1988). [CrossRef]
  30. D. Mori and T. Baba, "Dispersion-controlled optical group delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004). [CrossRef]
  31. B. M. Möller, U. Woggon, and M. V. Artemyev, "Band Formation in Coupled-Resonator Slow-Wave Structures," Opt. Express 15, 17362-17370 (2007). [CrossRef] [PubMed]
  32. M. Notomi, E. Kuramochi, and T. Takasumi, "Large-scale arrays of ultrahigh-Q coupled nanocavities," Nature Photon. 2, 741-747 (2008). [CrossRef]
  33. J. Jágerská, N. Le Thomas, V. Zabelin, R. Houdré, W. Bogaerts, P. Dumon, and R. Baets, "Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides," Opt. Lett. 34, 359-361 (2009). [CrossRef] [PubMed]
  34. D. Englund, I. Fushman, and J. Vuckovic, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961-5976 (2005). [CrossRef] [PubMed]
  35. H. Benisty, "Graphene nanoribbons: Photonic crystal waveguide analogy and minigap stripes," Phys. Rev. B 79, 155409 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited