OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14710–14721

Isotropic image in structured illumination microscopy patterned with a spatial light modulator

Bo-Jui Chang, Li-Jun Chou, Yun-Ching Chang, and Su-Yu Chiang  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 14710-14721 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1248 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed a structured illumination microscopy (SIM) system that uses a spatial light modulator (SLM) to generate interference illumination patterns at four orientations - 0°, 45°, 90°, and 135°, to reconstruct a high-resolution image. The use of a SLM for pattern alterations is rapid and precise, without mechanical calibration; moreover, our design of SLM patterns allows generating the four illumination patterns of high contrast and nearly equivalent periods to achieve a near isotropic enhancement in lateral resolution. We compare the conventional image of 100-nm beads with those reconstructed from two (0°+90° or 45°+135°) and four (0°+45°+90°+135°) pattern orientations to show the differences in resolution and image, with the support of simulations. The reconstructed images of 200-nm beads at various depths and fine structures of actin filaments near the edge of a HeLa cell are presented to demonstrate the intensity distributions in the axial direction and the prospective application to biological systems.

© 2009 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(180.3170) Microscopy : Interference microscopy

ToC Category:

Original Manuscript: April 30, 2009
Revised Manuscript: June 27, 2009
Manuscript Accepted: July 3, 2009
Published: August 5, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Bo-Jui Chang, Li-Jun Chou, Yun-Ching Chang, and Su-Yu Chiang, "Isotropic image in structured illumination microscopy patterned with a spatial light modulator," Opt. Express 17, 14710-14721 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Heintzmann, and G. Ficz, "Breaking the resolution limit in light microscopy," Brief. Funct. Genomics Proteomics 5, 289-301 (2006).
  2. M. G. L. Gustafsson, "Extended resolution fluorescence microscopy," Curr. Opin. Struct. Biol. 9, 627-634 (1999). [PubMed]
  3. B. Balley, D. L. Farkas, D. L. Taylor, and F. Lanni, "Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation," Nature 366, 44-48 (1993).
  4. R. Heintzmann, and C. Cremer, "Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating," Proc. SPIE 3568, 185-196 (1998).
  5. M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198, 82-87 (2000). [PubMed]
  6. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, "Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination," Proc. SPIE 3919, 141-150 (2000).
  7. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, "I5M: 3D widefield light microscopy with better than 100 nm axial resolution," J. Microsc. 195, 10-16 (1999). [PubMed]
  8. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, "Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses," Proc. SPIE 2412, 147-156 (1995).
  9. J. T. Frohn, H. F. Knapp, and A. Stemmer, "True optical resolution beyond the Rayleigh limit achieved by standing wave illumination," Proc. Natl. Acad. Sci. U. S. A. 97, 7232-7236 (2000). [PubMed]
  10. S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, "Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution," Appl. Phys. Lett. 64, 1335-1337 (1994).
  11. T. A. Klar, S. Jacobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. U. S. A. 97, 8206-8210 (2000). [PubMed]
  12. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006). [PubMed]
  13. M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Proc. Natl. Acad. Sci. U. S. A. 102, 13081-13086 (2005). [PubMed]
  14. R. Heintzmann, and T. M. Jovin, "Saturated patterned excitation microscopy-a concept for optical resolution improvement," J. Opt. Soc. Am. A 19, 1599-1609 (2002).
  15. R. Heintzmann, "Saturated patterned excitation microscopy with two-dimensional excitation patterns," Micron 34, 283-291 (2003). [PubMed]
  16. M. R. Beversluis, G. W. Bryant, and S. J. Stranick, "Effects of inhomogeneous fields in superresolving structured-illumination microscopy," J. Opt. Soc. Am. A 25, 1371-1377 (2008).
  17. E. Chung, D. Kim, and P. T. C. So, "Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy," Opt. Lett. 31, 945-947 (2006). [PubMed]
  18. R. Fiolka, M. Beck, and A. Stemmer, "Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator," Opt. Lett. 33, 1629-1631 (2008). [PubMed]
  19. M. G. L. Gustafsson, L. Shao, P. M. Cariton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, "Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination," Biophys. J. 94, 4957-4970 (2008). [PubMed]
  20. L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, "I5S: Wide-field light microscopy with 100-nm-Scale resolution in three dimensions," Biophys. J. 94, 4971-4983 (2008). [PubMed]
  21. J. Ryu, S. S. Hong, B. K. P. Horn, D. M. Freeman, and M. S. Mermelstein, "Multibeam interferometric illumination as the primary source of resolution in optical microscopy," Appl. Phys. Lett. 88, 171112-3 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited