OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14744–14760

Van der Waals enhancement of optical atom potentials via resonant coupling to surface polaritons

Joseph Kerckhoff and Hideo Mabuchi  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 14744-14760 (2009)
http://dx.doi.org/10.1364/OE.17.014744


View Full Text Article

Enhanced HTML    Acrobat PDF (772 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Contemporary experiments in cavity quantum electrodynamics (cavity QED) with gas-phase neutral atoms rely increasingly on laser cooling and optical, magneto-optical or magnetostatic trapping methods to provide atomic localization with sub-micron uncertainty. Difficult to achieve in free space, this goal is further frustrated by atom-surface interactions if the desired atomic placement approaches within several hundred nanometers of a solid surface, as can be the case in setups incorporating monolithic dielectric optical resonators such as microspheres, microtoroids, microdisks or photonic crystal defect cavities. Typically in such scenarios, the smallest atom-surface separation at which the van der Waals interaction can be neglected is taken to be the optimal localization point for associated trapping schemes, but this sort of conservative strategy generally compromises the achievable cavity QED coupling strength. Here we suggest a new approach to the design of optical dipole traps for atom confinement near surfaces that exploits strong surface interactions, rather than avoiding them, and present the results of a numerical study based on 39K atoms and indium tin oxide (ITO). Our theoretical framework points to the possibility of utilizing nanopatterning methods to engineer novel modifications of atom-surface interactions.

© 2009 Optical Society of America

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(270.5580) Quantum optics : Quantum electrodynamics
(020.1335) Atomic and molecular physics : Atom optics
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Quantum Optics

History
Original Manuscript: May 26, 2009
Manuscript Accepted: June 25, 2009
Published: August 5, 2009

Citation
Joseph Kerckhoff and Hideo Mabuchi, "Van derWaals enhancement of optical atom potentials via resonant coupling to surface polaritons," Opt. Express 17, 14744-14760 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-14744


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, "Controlling Cold Atoms using Nanofabricated Surfaces: Atom Chips," Phys. Rev. Lett. 84, 4749-4752 (2000). [CrossRef] [PubMed]
  2. B. Lev, Y. Lassailly, C. Lee, A. Scherer, and H. Mabuchi, "Atom mirror etched from a hard drive," Appl. Phys. Lett. 83, 395 (2003). [CrossRef]
  3. Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, "Atom Michelson interferometer on a chip using a Bose-Einstein condensate," Phys. Rev. Lett. 94, 090405 (2005). [CrossRef] [PubMed]
  4. S. Ghanbari, T. D. Kieu, A. Sidorov, and P. Hannaford, "Permanent magnetic lattices for ultracold atoms and quantum degenerate gases," J. Phys. B: At. Mol. Opt. Phys. 39, 847-860 (2006). [CrossRef]
  5. P. Treutlein, D. Hunger S. Camerer, T. Hänsch, and J. Reichel, "Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip." Phys. Rev. Lett. 99140403, (2007). [CrossRef] [PubMed]
  6. T. P. Purdy and D. M. Stamper-Kurn, "Integrating cavity quantum electrodynamics and ultracold-atom chips with on-chip dielectric mirrors and temperature stabilization," Appl. Phys. B 90, 401-405 (2008). [CrossRef]
  7. H. Mabuchi, M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, and A. Scherer, "Quantum networks based on cavity QED" Quantum Information and Computation,  1, 7-12 (2001).
  8. M. Trupke, J. Metz, A. Beige, and E. A. Hinds, "Towards quantum computing with single atoms and optical cavities on atom chips," J. Mod. Opt. 54, 1639-1655 (2007). [CrossRef]
  9. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, "A Photon Turnstile Dynamically Regulated by One Atom," Science 319, 1062-1065 (2008). [CrossRef] [PubMed]
  10. S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, "A chip-scale atomic clock based on 87Rb with improved frequency stability," Opt. Express 13,1249-1253 (2005). [CrossRef] [PubMed]
  11. P. Schwindt, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, "Chip-scale atomic magnetometer." Appl. Phys. Lett. 85,6409 (2004). [CrossRef]
  12. H. Mabuchi and H. J. Kimble, "Atom galleries for whispering atoms: binding atoms in stable orbits around an optical resonator." Opt. Lett. 19, 749-751 (1994). [CrossRef] [PubMed]
  13. C. Henkel, B. Power, and F. Sols, "New light on cavity QED with ultracold atoms," J. Phys.: Conf. Series 19, 34-39 (2005). [CrossRef]
  14. H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, "Resonant van der Waals repulsion between excited Cs atoms and sapphire surface," Phys. Rev. Lett. 83, 5467-5470 (1999). [CrossRef]
  15. H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, "Resonant coupling in the van der Waals interaction between an excited alkali atom and a dielectric surface: an experimental study via stepwise selective reflection spectroscopy," Eur. Phys. J. D 23, 237-255 (2003). [CrossRef]
  16. H. Failache, S. Saltiel, A. Fischer, D. Bloch, and M. Ducloy, "Resonant quenching of gas-phase Cs atoms induced by surface polaritons," Phys. Rev. Lett. 88, 243603 (2002). [CrossRef] [PubMed]
  17. R. Eisenschitz and F. London, "U ber das Verhaltnis der van der Waalsschen Krafte zu den homo¨opolaren Bindungskraften," Z. Physik,  60491-527 (1930). [CrossRef]
  18. I. E. Dzyaloshinskii, E. Lifshitz, and L. Pitaevshkii, "General theory of van der Waals’ forces," Sov. Phys. Uspekhi 4, 153-176 (1961). [CrossRef]
  19. J. M. Wylie and J. E. Sipe, "Quantum electrodynamics near and interface," Phys. Rev. A 30, 1185-1193 (1984). [CrossRef]
  20. J. M. Wylie and J. E. Sipe, "Quantum electrodynamics near and interface II," Phys. Rev. A 32, 2030 - 2043 (1985). [CrossRef] [PubMed]
  21. J. E. Sipe, "The dipole antenna problem in surface physics: a new approach," Surf. Sci. 105, 489-504 (1981). [CrossRef]
  22. A. Landragin, J.-Y. Courtois, G. Labeyrie, N. Vansteenkiste, C. Westbrook, and A. Aspect, "Measurement of the van der Waals force in an atomic mirror," Phys. Rev. Lett. 77, 1464-1467 (1996). [CrossRef] [PubMed]
  23. T. A. Pasquini, T. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D. Pritchard, and W. Ketterle, "Quantum reflection from a solid surface at normal incidence," Phys. Rev. Lett. 93223201, (2004). [CrossRef] [PubMed]
  24. C. Cohen-Tannoudji, J. Doupont-Roc, G. Grynberg. Atom-Photon Interactions. Wiley-VCH, Weinheim (2004).
  25. A. D. Raki’c, A. Djurisic, J. Elazar, and M. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998). [CrossRef]
  26. S. Saltiel, D. Bloch, and M. Ducloy, "A tabulation and critical analysis of the wavelength- dependent dielectric image coefficient for the interaction excerted by a surface onto a neighbouring excited atom," Opt. Comm. 265, 220-233 (2006). [CrossRef]
  27. E. Palik (Ed.), Optical Handbook of the Optical Constants of Solids (Academic Press, New York, 3 volumes 1998).
  28. O. S. Heavens, "Radiative transition probabilities of the lower excited states of the alkali metals," J. Opt. Soc. Am. 51, 1058-1061 (1961). [CrossRef]
  29. A. Lindgard and S. E. Nielsen,"Transition probabilities for the alkali isoelectronic sequences Li I, Na I, K I, Rb I, Cs I, Fr I," Atomic Data and Nuclear Data Tables 19, 533-633 (1977).
  30. C. Corliss and J. Sugar, "Energy levels of potassium, KI through KXIX," J. Phys. Chem. Ref. Data,  8, 1109-1145 (1979). [CrossRef]
  31. C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. Aspnes, J.-P. Maria, and S. Franzen, "Dependence of plasmon polaritons on the thickness of indium tin oxide thin films," J. Appl. Phys. 103, 093108 (2008). [CrossRef]
  32. S. Franzen,"Surface plasmon polaritons and plasma absorption in indium tin oxide compared to silver and gold," J. Phys. Chem. C 112, 6027-6032 (2008). [CrossRef]
  33. E. Arimondo, M. Inguscio, and P. Volino, "Experimental determinations of the hyperfine structure in the alkali atoms," Rev. Mod. Phys. 49, 31-76 (1977). [CrossRef]
  34. D. Steck, "Alkali D line data," http://steck.us/alkalidata/.
  35. J. Dalibard and C. Cohen-Tannoudji, "Laser cooling below the Doppler limit by polarization gradients: simple theoretical models," J. Opt. Soc. Am B 62023-2045 (1989). [CrossRef]
  36. H. J. Charmichael, An Open Systems Approach to Quantum Optics (Springer-Verlag, Berlin, 1993).
  37. L. Bouten, R. van Handel, and M. James, "An introdution to quantum filtering," SIAM J. Control Optim. 46, 2199-2241, (2007). [CrossRef]
  38. R. van Handel and H. Mabuchi, "Quantum projection filter for a highly non-linear model in cavity QED," J. Opt. B: Quantum Semiclass. 7, 226-236 (2005). [CrossRef]
  39. B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, "Feasibility of detecting single atoms using photonic bandgap cavities," Nanotechnology 15, S556S561 (2004). [CrossRef]
  40. E. N. Economou, "Surface plasmons on thin films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  41. W. L. Barnes, T. Preist, S. Kitson, andJ. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B. 546227-6244, (1996). [CrossRef]
  42. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848, (2004). [CrossRef] [PubMed]
  43. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, "Engineering infrared emission properties of silicon in the near field and the far field," Opt. Comm. 237, 379-388 (2004). [CrossRef]
  44. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406, (2007). [CrossRef] [PubMed]
  45. Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, "Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures," Phys. Rev. B,  78, 153111, (2008). [CrossRef]
  46. M. Chevrollier, M. Fichet, M. Oria, G. Rahmat, D. Bloch, and M. Ducloy, "High resolution selective reflection spectroscopy as a probe of long-range surface interaction: measurement of the surface van der Waals attraction exerted on excited Cs atoms," J. Phys. II France 2, 631-657 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited