OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14771–14779

Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms

Jeremy A. Bossard, Seokho Yun, Douglas H. Werner, and Theresa S. Mayer  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 14771-14779 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (691 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Negative index metamaterial designs for the mid-infrared with low absorption and impedance mismatch losses are presented. A robust genetic algorithm is employed to optimize the flexible metamaterial structure for targeted refractive index and impedance values. A new figure of merit is introduced to evaluate the impedance match of the metamaterial to free space. Two designs are presented demonstrating low-loss characteristics for a thin metamaterial with two metal screens and a thick metamaterial stack with five screens. The device performance is analyzed when adding more screens to the structure, revealing that optimizing a thick stack produces a metamaterial with properties approaching those of a bulk material.

© 2009 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(310.4165) Thin films : Multilayer design

ToC Category:

Original Manuscript: May 26, 2009
Revised Manuscript: July 25, 2009
Manuscript Accepted: July 28, 2009
Published: August 5, 2009

Jeremy A. Bossard, Seokho Yun, Douglas H. Werner, and Theresa S. Mayer, "Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms," Opt. Express 17, 14771-14779 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  3. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004). [CrossRef] [PubMed]
  4. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005). [CrossRef]
  5. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780nm wavelength,” Opt. Lett. 32(1), 53–55 (2007). [CrossRef]
  6. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006). [CrossRef] [PubMed]
  7. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008). [CrossRef] [PubMed]
  8. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  9. R. L. Haupt, and D. H. Werner, Genetic Algorithms in Electromagnetics (Wiley, Hoboken, NJ, 2007).
  10. J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006). [CrossRef]
  11. Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008). [CrossRef]
  12. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11(7), 735–745 (2003). [CrossRef] [PubMed]
  13. D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antenn. Propag. 53(1), 8–17 (2005). [CrossRef]
  14. D. J. Kern, D. H. Werner, M. J. Wilhelm, and K. H. Church, “Genetically engineered multiband high-impedance frequency selective surfaces,” Microw. Opt. Technol. Lett. 38(5), 400–403 (2003). [CrossRef]
  15. Y. Yuan, C. H. Chan, K. F. Man, and K. M. Luk, “Meta-material surface design using the hierarchical genetic algorithm,” Microw. Opt. Technol. Lett. 39(3), 226–230 (2003). [CrossRef]
  16. D. J. Kern and D. H. Werner, “A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers,” Microw. Opt. Technol. Lett. 38(1), 61–64 (2003). [CrossRef]
  17. P. Y. Chen, C. H. Chen, H. Wang, J. H. Tsai, and W. X. Ni, “Synthesis design of artificial magnetic metamaterials using a genetic algorithm,” Opt. Express 16(17), 12806–12818 (2008). [CrossRef] [PubMed]
  18. D. J. Kern, D. H. Werner, and M. Lisovich, “Metaferrites: Using electromagnetic bandgap structures to synthesize metamaterial ferrites,” IEEE Trans. Antenn. Propag. 53(4), 1382–1389 (2005). [CrossRef]
  19. M. A. Gingrich and D. H. Werner, “Synthesis of low/zero index of refraction metamaterials from frequency selective surfaces using genetic algorithms,” IEE Electron. Lett. 41(23), 1266–1267 (2005). [CrossRef]
  20. D.-H. Kwon, L. Li, J. A. Bossard, M. G. Bray, and D. H. Werner, “Zero index metamaterials with checkerboard structure,” Elec. Lett. 43(6), 319–320 (2007). [CrossRef]
  21. T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag. 47(5), 843–850 (1999). [CrossRef]
  22. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef]
  23. W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE 62(1), 33–36 (1974). [CrossRef]
  24. J. Radovanović, V. Milanović, Z. Ikonić, and D. Indjin, “Application of the genetic algorithm to the optimized design of semimagnetic semiconductor-based spin-filters,” J. Phys. D Appl. Phys. 40(17), 5066–5070 (2007). [CrossRef]
  25. C. García-Meca, R. Ortuño, R. Salvador, A. Martínez, and J. Martí, “Low-loss single-layer metamaterial with negative index of refraction at visible wavelengths,” Opt. Express 15(15), 9320–9325 (2007). [CrossRef] [PubMed]
  26. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited