OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14800–14805

Broadband exterior cloaking

Fernando Guevara Vasquez, Graeme W. Milton, and Daniel Onofrei  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 14800-14805 (2009)
http://dx.doi.org/10.1364/OE.17.014800


View Full Text Article

Enhanced HTML    Acrobat PDF (1013 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is shown how a recently proposed method of cloaking is effective over a broad range of frequencies. The method is based on three or more active devices. The devices, while not radiating significantly, create a “quiet zone” between the devices where the wave amplitude is small. Objects placed within this region are virtually invisible. The cloaking is demonstrated by simulations with a broadband incident pulse.

© 2009 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(260.0260) Physical optics : Physical optics
(350.7420) Other areas of optics : Waves

ToC Category:
Physical Optics

History
Original Manuscript: July 1, 2009
Revised Manuscript: July 24, 2009
Manuscript Accepted: July 27, 2009
Published: August 5, 2009

Citation
Fernando Guevara Vasquez, Graeme W. Milton, and Daniel Onofrei, "Broadband exterior cloaking," Opt. Express 17, 14800-14805 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-14800


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Guevara Vasquez, G. W. Milton, and D. Onofrei, "Active exterior cloaking for the 2D Laplace and Helmholtz equations," (2009). Accepted for publication in Phys. Rev. Lett., arXiv:0906.1544v1 [math-ph].
  2. D. A. B. Miller, "On perfect cloaking," Opt. Express 14, 1457-1466 (2006). [CrossRef]
  3. R. Weder, "A rigorous analysis of high-order electromagnetic invisibility cloaks," J. Phys. A 41, 065,207 (2008). [CrossRef]
  4. A. G. Ramm, "Invisible obstacles," Ann. Polon. Math. 90, 145-148 (2007). [CrossRef]
  5. L. S. Dolin, "To the possibility of comparison of three-dimensional electromagnetic systems with nonuniform anisotropic filling," Izv. Vyssh. Uchebn. Zaved. Radiofizika 4, 964-967 (1961).
  6. M. Kerker, "Invisible bodies," J. Opt. Soc. Am. 65, 376-379 (1975). [CrossRef]
  7. A. Alú and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016,623 (2005). [CrossRef]
  8. A. Greenleaf, M. Lassas, and G. Uhlmann, "Anisotropic conductivities that cannot be detected by EIT," Physiol. Meas. 24, 413-419 (2003). [CrossRef] [PubMed]
  9. U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  10. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  11. H. Chen and C. T. Chan, "Acoustic cloaking in three dimensions using acoustic metamaterials," Appl. Phys. Lett. 91, 183,518 (2007).
  12. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, "Full-wave invisibility of active devices at all frequencies," Commun. Math. Phys. 275, 749-789 (2007). [CrossRef]
  13. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, "Scattering Theory Derivation of a 3D Acoustic Cloaking Shell," Phys. Rev. Lett. 100, 024,301 (2008). [CrossRef]
  14. A. N. Norris, "Acoustic cloaking theory," Proc. R. Soc. Lon. Ser. A. Math. Phys. Sci. 464, 2411-2434 (2008). [CrossRef]
  15. G.W. Milton, M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J. Phys. 8, 248 (2006). [CrossRef]
  16. M. Brun, S. Guenneau, and A. B. Movchan, "Achieving control of in-plane elastic waves," Appl. Phys. Lett. 94, 061903 (2009). [CrossRef]
  17. M. Farhat, S. Guenneau, S. Enoch, and A. B. Movchan, "Cloaking bending waves propagating in thin elastic plates," Phys. Rev. B 79, 033102 (2009). [CrossRef]
  18. M. Farhat, S. Enoch, S. Guenneau, and A. B. Movchan, "Broadband cylindrical acoustic cloak for linear surface waves in a fluid," Phys. Rev. Lett. 101, 134,501 (2008). [CrossRef]
  19. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006). [CrossRef] [PubMed]
  20. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science 323, 366-369 (2009). [CrossRef] [PubMed]
  21. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nat. Mater. 8, 568-571 (2009). [CrossRef] [PubMed]
  22. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, "Cloaking at Optical Frequencies," (2009). ArXiv:0904.3508v1 [physics.optics].
  23. G. W. Milton and N.-A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. Lon. Ser. A. Math. Phys. Sci. 462, 3027-3059 (2006). [CrossRef]
  24. N.-A. P. Nicorovici, G.W. Milton, R. C. McPhedran, and L. C. Botten, "Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance," Opt. Express 15, 6314-6323 (2007). [CrossRef] [PubMed]
  25. G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, "Solutions in folded geometries, and associated cloaking due to anomalous resonance," New J. Phys. 10, 115,021 (2008). [CrossRef]
  26. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  27. N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, "Optical and dielectric properties of partially resonant composites," Phys. Rev. B 49, 8479-8482 (1994). [CrossRef]
  28. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  29. O. P. Bruno and S. Lintner, "Superlens-cloaking of small dielectric bodies in the quasistatic regime," J. Appl. Phys. 102, 124,502 (2007). [CrossRef]
  30. Y. Lai, H. Chen, Z.-Q. Zhang, and C. T. Chan, "Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell," Phys. Rev. Lett. 102, 093,901 (2009). [CrossRef]
  31. J. Li and J. B. Pendry, "Hiding under the carpet: a new strategy for cloaking," Phys. Rev. Lett. 101, 203,901 (2008). [CrossRef]
  32. U. Leonhardt and T. Tyc, "Broadband invisibility by non-Euclidean cloaking," Science 323, 110-112 (2009). [CrossRef]
  33. J. E. F. Williams, "Review Lecture: Anti-Sound," Proc. R. Soc. A 395, 63-88 (1984). [CrossRef]
  34. A. W. Peterson and S. V. Tsynkov, "Active control of sound for composite regions," SIAM J. Appl. Math. 67, 1582-1609 (2007). [CrossRef]
  35. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, "Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking," Phys. Rev. Lett. 102, 213,901 (2009). [CrossRef]
  36. D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, vol. 93 of Applied Mathematical Sciences, 2nd ed. (Springer-Verlag, Berlin, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (2316 KB)     
» Media 2: MOV (3770 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited