OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14865–14871

Comparative studies of paraxial and nonparaxial vectorial elegant Laguerre-Gaussian beams

Zhangrong Mei and Juguan Gu  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 14865-14871 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (458 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Analytical paraxial and nonparaxial propagation expressions for vectorial elegant Laguerre-Gaussian (eLG) beam together with its even and odd modes are introduced by use of the vectorial Rayleigh-Sommerfeld formulas and the relations between eLG and elegant Hermite-Gaussian (eHG) modes. The propagation features of vectorial eLG beams are studied and analyzed comparatively in the paraxial and nonparaxial regimes with vivid illustration. It is shown that the propagation behavior of nonparaxial vectorial eLG beams is notably different from that of paraxial cases.

© 2009 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(140.3300) Lasers and laser optics : Laser beam shaping

ToC Category:
Physical Optics

Original Manuscript: June 2, 2009
Revised Manuscript: July 28, 2009
Manuscript Accepted: August 2, 2009
Published: August 6, 2009

Zhangrong Mei and Juguan Gu, "Comparative studies of paraxial and nonparaxial vectorial elegant Laguerre-Gaussian beams," Opt. Express 17, 14865-14871 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. E. Siegman, “Hermite-Gaussian functions of complex argument as optical-beam eigenfunctions,” J. Opt. Soc. Am. 63(9), 1093–1094 (1973). [CrossRef]
  2. T. Takenaka, M. Yokota, and O. Fukumitsu, “Propagation of light beams beyond the paraxial approximate,” J. Opt. Soc. Am. A 2(6), 826–829 (1985). [CrossRef]
  3. E. Zauderer, “Complex argument Hermite-Gaussian and Laguerre-Gaussian beams,” J. Opt. Soc. Am. A 3(4), 465–469 (1986). [CrossRef]
  4. S. Saghafi and C. J. R. Sheppard, “Near field and far field of elegant Hermite-Gaussian and Laguerre-Gaussian modes,” J. Mod. Opt. 45, 1999–2009 (1998). [CrossRef]
  5. S. R. Seshadri, “Virtual source for a Laguerre-Gauss beam,” Opt. Lett. 27(21), 1872–1874 (2002). [CrossRef]
  6. M. A. Bandres and J. C. Gutiérrez-Vega, “Higher-order complex source for elegant Laguerre-Gaussian waves,” Opt. Lett. 29(19), 2213–2215 (2004). [CrossRef] [PubMed]
  7. H. C. Kim and Y. H. Lee, “Hermite-Gaussian and Laguerre-Gaussian beams beyond the paraxial approximation,” Opt. Commun. 169(1-6), 9–16 (1999). [CrossRef]
  8. A. April, “Nonparaxial elegant Laguerre-Gaussian beams,” Opt. Lett. 33(12), 1392–1394 (2008). [CrossRef] [PubMed]
  9. R. Borghi and M. Santarsiero, “Nonparaxial propagation of spirally polarized optical beams,” J. Opt. Soc. Am. A 21, 2029–2037 (2004). [CrossRef]
  10. K. Duan, B. Wang, and B. Lü, “Propagation of Hermite-Gaussian and Laguerre-Gaussian beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 22(9), 1976–1980 (2005). [CrossRef]
  11. Z. Mei and D. Zhao, “Nonparaxial analysis of vectorial Laguerre-Bessel-Gaussian beams,” Opt. Express 15(19), 11942–11951 (2007). [CrossRef] [PubMed]
  12. A. Ciattoni, B. Crosignani, and P. D. Porto, “Vectorial analytical description of propagation of a highly nonparaxial beam,” Opt. Commun. 202(1-3), 17–20 (2002). [CrossRef]
  13. I. Kimel and L. R. Elias, “Relations Between Hermite and Laguerre Gaussian Modes,” IEEE J. Quantum Electron. 29(9), 2562–2567 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited