OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14880–14894

Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range

Michalina Gora, Karol Karnowski, Maciej Szkulmowski, Bartlomiej J. Kaluzny, Robert Huber, Andrzej Kowalczyk, and Maciej Wojtkowski  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 14880-14894 (2009)
http://dx.doi.org/10.1364/OE.17.014880


View Full Text Article

Enhanced HTML    Acrobat PDF (1372 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an application of in vivo anterior segment imaging of the human eye with an ultrahigh speed swept source OCT instrument. For this purpose, a dedicated OCT system was designed and constructed. This instrument enables axial zooming by automatic reconfiguration of spectral sweep range; an enhanced imaging range mode enables imaging of the entire anterior segment while a high axial resolution mode provides detailed morphological information of the chamber angle and the cornea. The speed of 200,000 lines/s enables high sampling density in three-dimensional imaging of the entire cornea in 250 ms promising future applications of OCT for optical corneal topography, pachymetry and elevation maps. The results of a preliminary quantitative corneal analysis based on OCT data free form motion artifacts are presented. Additionally, a volumetric and real time reconstruction of dynamic processes, like pupillary reaction to light stimulus or blink-induced contact lens movements are demonstrated.

© 2009 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(140.3600) Lasers and laser optics : Lasers, tunable
(170.4470) Medical optics and biotechnology : Ophthalmology

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 15, 2009
Revised Manuscript: July 31, 2009
Manuscript Accepted: August 4, 2009
Published: August 6, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Michalina Gora, Karol Karnowski, Maciej Szkulmowski, Bartlomiej J. Kaluzny, Robert Huber, Andrzej Kowalczyk, and Maciej Wojtkowski, "Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range," Opt. Express 17, 14880-14894 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-14880


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Konstantopoulos, P. Hossain, and D. F. Anderson, “Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis?” Br. J. Ophthalmol. 91(4), 551–557 (2007). [PubMed]
  2. A. C. Cheng, S. K. Rao, S. Lau, C. K. Leung, and D. S. Lam, “Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia,” J. Refract. Surg. 24(4), 361–365 (2008). [PubMed]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [PubMed]
  4. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997). [PubMed]
  5. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
  6. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002). [PubMed]
  7. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004). [PubMed]
  8. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112(10), 1734–1746 (2005). [PubMed]
  9. U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005). [PubMed]
  10. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994). [PubMed]
  11. J. J. Kaluzny, M. Wojtkowski, and A. Kowalczyk, “Imaging of the anterior segment of the eye by spectral optical coherence tomography,” Opt. Appl. 32, 581–589 (2002).
  12. G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refract. Surg. 30(9), 1843–1850 (2004). [PubMed]
  13. C. K. Leung, W. M. Chan, C. Y. Ko, S. I. Chui, J. Woo, M. K. Tsang, and R. K. Tse, “Visualization of anterior chamber angle dynamics using optical coherence tomography,” Ophthalmology 112(6), 980–984 (2005). [PubMed]
  14. B. J. Kaluzny, B. J. Kaluzy, J. J. Kałuzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006). [PubMed]
  15. Y. Li, R. Shekhar, and D. Huang, “Corneal pachymetry mapping with high-speed optical coherence tomography,” Ophthalmology 113(5), 792–799, e2 (2006). [PubMed]
  16. S. Radhakrishnan, J. See, S. D. Smith, W. P. Nolan, Z. Ce, D. S. Friedman, D. Huang, Y. Li, T. Aung, and P. T. K. Chew, “Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(8), 3683–3688 (2007). [PubMed]
  17. V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007). [PubMed]
  18. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009). [PubMed]
  19. E. Götzinger, M. Pircher, M. Sticker, A. F. Fercher, and C. K. Hitzenberger, “Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 94–102 (2004). [PubMed]
  20. E. Götzinger, M. Pircher, I. Dejaco-Ruhswurm, S. Kaminski, C. Skorpik, and C. K. Hitzenberger, “Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(8), 3551–3558 (2007). [PubMed]
  21. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16(8), 5892–5906 (2008). [PubMed]
  22. C. K. Leung, H. Li, R. N. Weinreb, J. Liu, C. Y. Cheung, R. Lai, C. P. Pang, and D. S. Lam, “Anterior Chamber Angle Measurement with Anterior Segment Optical Coherence Tomography (OCT) - A Comparison Between Slit Lamp OCT and Visante OCT,” Invest Ophthalmol Vis Sci (2008).
  23. S. Radhakrishnan, J. Goldsmith, D. Huang, V. Westphal, D. K. Dueker, A. M. Rollins, J. A. Izatt, and S. D. Smith, “Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles,” Arch. Ophthalmol. 123(8), 1053–1059 (2005). [PubMed]
  24. M. Miura, K. Kawana, T. Iwasaki, T. Kiuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, “Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy,” J. Glaucoma 17(3), 193–196 (2008). [PubMed]
  25. S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001). [PubMed]
  26. C. Kerbage, H. Lim, W. Sun, M. Mujat, and J. F. de Boer, “Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging,” Opt. Express 15(12), 7117–7125 (2007). [PubMed]
  27. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003). [PubMed]
  28. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003). [PubMed]
  29. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [PubMed]
  30. S. Fukuda, K. Kawana, Y. Yasuno, and T. Oshika, “Anterior ocular biometry using 3-dimensional optical coherence tomography,” Ophthalmology 116(5), 882–889 (2009). [PubMed]
  31. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003). [PubMed]
  32. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003). [PubMed]
  33. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005). [PubMed]
  34. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
  35. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005). [PubMed]
  36. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006). [PubMed]
  37. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006). [PubMed]
  38. M. Y. Jeon, J. Zhang, and Z. Chen, “Characterization of Fourier domain mode-locked wavelength swept laser for optical coherence tomography imaging,” Opt. Express 16(6), 3727–3737 (2008). [PubMed]
  39. G. Y. Liu, A. Mariampillai, B. A. Standish, N. R. Munce, X. Gu, and I. A. Vitkin, “High power wavelength linearly swept mode locked fiber laser for OCT imaging,” Opt. Express 16(18), 14095–14105 (2008). [PubMed]
  40. Y. Mao, C. Flueraru, S. Sherif, and S. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun. 282, 88–92 (2009).
  41. R. Navarro, L. González, and J. Hernández, “Optics of the average normal cornea from general and canonical representations of its surface topography,” J. Opt. Soc. Am. A 23, 219–232 (2006).
  42. M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126(4), 537–542 (2008). [PubMed]
  43. L. Plesea and A. G. Podoleanu, “Direct corneal elevation measurements using multiple delay en face optical coherence tomography,” J. Biomed. Opt. 13(5), 054054 (2008). [PubMed]
  44. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008). [PubMed]
  45. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005). [PubMed]
  46. J. Goodman, Statistical Optics (Wiley New York, 1985).
  47. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008). [PubMed]
  48. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express . 17, 9947-9961 (2009). [PubMed]
  49. A. N. S. Institute, “American National Standard for Safe use of Lasers,” (American National Standards Institute, Orlando, FL, 2000).
  50. V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002). [PubMed]
  51. Y. Le Grand, and S. El Hage, Physiological Optics (Springer-Verlag, Berlin, 1980).
  52. B. J. Kałuzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Spectral optical coherence tomography: a new imaging technique in contact lens practice,” Ophthalmic Physiol. Opt. 26(2), 127–132 (2006). [PubMed]
  53. B. J. Kaluzny, W. Fojt, A. Szkulmowska, T. Bajraszewski, M. Wojtkowski, and A. Kowalczyk, “Spectral optical coherence tomography in video-rate and 3D imaging of contact lens wear,” Optom. Vis. Sci. 84(12), 1104–1109 (2007). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (6185 KB)     
» Media 2: AVI (8482 KB)     
» Media 3: AVI (2971 KB)     
» Media 4: AVI (7519 KB)     
» Media 5: AVI (307 KB)     
» Media 6: AVI (692 KB)     
» Media 7: AVI (4470 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited