OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14934–14947

Discontinuous Galerkin time-domain computations of metallic nanostructures

Kai Stannigel, Michael König, Jens Niegemann, and Kurt Busch  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 14934-14947 (2009)
http://dx.doi.org/10.1364/OE.17.014934


View Full Text Article

Enhanced HTML    Acrobat PDF (487 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We apply the three-dimensional Discontinuous-Galerkin Time-Domain method to the investigation of the optical properties of bar- and V-shaped metallic nanostructures on dielectric substrates. A flexible finite element-like mesh together with an expansion into high-order basis functions allows for an accurate resolution of complex geometries and strong field gradients. In turn, this provides accurate results on the optical response of realistic structures. We study in detail the influence of particle size and shape on resonance frequencies as well as on scattering and absorption efficiencies. Beyond a critical size which determines the onset of the quasi-static limit we find significant deviations from the quasi-static theory. Furthermore, we investigate the influence of the excitation by comparing normal illumination and attenuated total internal reflection setups. Finally, we examine the possibility of coherently controlling the local field enhancement of V-structures via chirped pulses.

© 2009 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(290.5850) Scattering : Scattering, particles
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 27, 2009
Revised Manuscript: June 12, 2009
Manuscript Accepted: June 26, 2009
Published: August 7, 2009

Citation
Kai Stannigel, Michael König, Jens Niegemann, and Kurt Busch, "Discontinuous Galerkin time-domain computations of metallic nanostructures," Opt. Express 17, 14934-14947 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-14934


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Soller,M. Ringler,M. Wunderlich, T. A. Klar, J. Feldmann, H.-P. Josel, Y. Markert, A. Nichl, and K. K¨urzinger, "Radiative and nonradiative rates of phosphors attached to gold nanoparticles," Nano Lett. 7, 1941-1946 (2008).
  2. J. Steidtner and B. Pettinger, "Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution," Phys. Rev. Lett. 100, 236101-1-4 (2008).
  3. S. Kim, J. Jin., Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, "High-harmonic generation by resonant Plasmon field enhancement," Nature 453, 757-760 (2008). [PubMed]
  4. D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402-1-4 (2003).
  5. N. I. Zheludev, S. I. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nature Photon. 2, 351-354 (2008).
  6. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2008).
  7. M. Righini, V. Giovani, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 186804-1-4 (2008).
  8. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photon. 2, 365-370 (2008).
  9. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo,W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007). [PubMed]
  10. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
  11. C. M. Aikens, S. Li, and G. C. Schatz, "From discrete electronic states to plasmons: TDDFT optical absorption properties of Agn(n=10,20,35,56,84,120) tetrahedral clusters," J. Phys. Chem. C 112, 11272-11279 (2008).
  12. M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Coherent control of femtosecond energy localization in nanosystems," Phys. Rev. Lett. 88, 067402-1-4 (2002).
  13. M. I. Stockman, D. J. Bergmann, and T. Kobayashi, "Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems," Phys. Rev. B 69, 054202-054211 (2004).
  14. X. Li and M. I. Stockman, "Highly efficient spatiotemporal control in nanoplasmonics on a nanometerfemtosecond scale by time reversal," Phys. Rev. B 77, 195109 (2008).
  15. V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Martin, and F. J. Garcia de Abajo, "Modelling the optical response of gold nanoparticles," Chem. Soc. Rev. 37, 1792-1805 (2008). [PubMed]
  16. J. Jin, Computational Electrodynamics: The Finite Element Method in Electromagnetics (2nd edition, John Wiley & Sons, New York, 2002).
  17. C. Hafner, Post-modern Electromagnetics (John Wiley & Sons, New York, 1999).
  18. N. Calander and M. Willander, "Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids," J. Appl. Phys. 92, 4878-4884, (2002).
  19. R. Kappeler, D. Erni, C. Xudong, and L. Novotny, "Field computations of optical antennas," J. Comput. Theor. Nanosci. 4, 686-691 (2007).
  20. X. Cui,W. Zhang, B.-S. Yeo, R. Zenobi, Ch. Hafner, and D. Erni, "Tuning the resonance frequency of Ag-coated dielectric tips," Opt. Express 15, 8309-8316 (2007). [PubMed]
  21. H. Fischer and O. J. F. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Express 16, 9144-9154 (2008). [PubMed]
  22. M. I. Stockman, "Ultrafast nanoplasmonics under coherent control," New J. Phys. 10, 025031 (2008).
  23. A. Taflove and S. C. Hagness, Computational electrodynamics (3rd edition, Artech House, Boston, 2005).
  24. J. Niegemann, M. K¨onig, K. Stannigel, and K. Busch, "Higher-order time-domain methods for the analysis of nano-photonic systems," Photon. Nanostruct. Fundam. Appl. 7, 2-11 (2008).
  25. J. S. Hesthaven and T. Warburton, "Nodal high-order methods on unstructured grids - I. Time-domain solution of Maxwell’s equations," J. Comput. Phys. 181, 186-221 (2002).
  26. T. Lu, P. Zhang, and W. Cai, "Discontinuous Galerkin methods for dispersive and lossy Maxwell’s equations and ML boundary conditions," J. Comput. Phys. 200, 549-580 (2004).
  27. M. H. Carpenter and C. A. Kennedy, "Fourth-Order 2N-Storage Runge-Kutta Schemes," Technical Report NASA-TM-109112, NASA Langley Research Center, VA (1994).
  28. K. Busch, J. Niegemann, M. Pototschnig, and L. Tkeshelashvili, "A Krylov-subspace based solver for the linear and nonlinear Maxwell equations," phys. stat. sol. (b) 244, 3479-2496 (2007).
  29. H. C. van de Hulst, Light scattering by small particles (Dover Publ., New York, 1981).
  30. M. Liu, P. Guyot-Sionnest, T.-W. Lee, and S. K. Gray, "Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations," Phys. Rev. B 76, 235428 (2007).
  31. E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004). [PubMed]
  32. H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, "Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation," Appl. Phys. Lett. 83, 4625-4627 (2003).
  33. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (JohnWiley & Sons, New York, 1983).
  34. C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
  35. A. Arbouet, D. Christofilos, N. Del Fatti, F. Vall´ee, J.R. Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, "Direct Measurement of the Single-Metal-Cluster Optical Absorption," Phys. Rev. Lett. 93, 127401-1-4 (2004).
  36. M. Husnik, M. W. Klein, N. Feth, M. K¨onig, J. Niegemann, K. Busch, S. Linden, and M. Wegener, "Absolute extinction cross-section of individual magnetic split-ring resonators," Nature Photon. 2, 614-617 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited