OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14967–14976

Effects of vertex truncation of polyhedral nanostructures on localized surface plasmon resonance

W. Y. Ma, J. Yao, H. Yang, J. Y. Liu, F. Li, J. P. Hilton, and Q. Lin  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 14967-14976 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (321 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polyhedral nanostructures are widely used to enable localized surface plasmon resonance (LSPR). In practice, vertices of such structures are almost always truncated due to limitations of nanofabrication processes. This paper studies the effects of vertex truncation of polyhedral nanostructures on the characteristics of LSPR sensing. The optical properties and sensing performance of triangular nanoplates with truncated vertices are investigated using electrodynamics analysis and verified by experiment. The experimental results correlated with simulation analysis demonstrate that the fabricated triangular nanoplate array has a truncation ratio, defined as the length of truncation along an edge of the triangle over the edge length, of approximately 12.8%. This significantly influences optical properties of the nanostructures, resulting in poorer sensing performance. These insights can be used to guide the design and fabrication of nanostructures for high performance LSPR sensors.

© 2009 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Optics at Surfaces

Original Manuscript: July 1, 2009
Revised Manuscript: July 24, 2009
Manuscript Accepted: July 25, 2009
Published: August 10, 2009

W. Y. Ma, J. Yao, H. Yang, J. Y. Liu, F. Li, J. P. Hilton, and Q. Lin, "Effects of vertex truncation of polyhedral nanostructures on localized surface plasmon resonance," Opt. Express 17, 14967-14976 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [PubMed]
  2. M. Li, Z. S. Zhang, X. Zhang, K. Y. Li, and X. F. Yu, “Optical properties of Au/Ag core/shell nanoshuttles,” Opt. Express 16(18), 14288–14293 (2008). [PubMed]
  3. F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett. 7(3), 729–732 (2007). [PubMed]
  4. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the Influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
  5. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
  6. P. K. Jain, I. H. El-sayed, and M. A. El-sayed, “Au nanoparticles target cancer,” Nano Today 2(1), 18–29 (2007).
  7. S. L. Zhu, F. Li, C. L. Du, and Y. Q. Fu, “A localized surface plasmon resonance nanosensor based on rhombic Ag nanoparticle array,” Sens. Actuators B Chem. 134(1), 193–198 (2008).
  8. K. A. Willets and R. P. V. Duyne, “Localized surface plasmon spectroscopy and sensing,” Annu. Rev. Chem. 58(1), 267–297 (2007).
  9. C. D. Chen, S. F. Cheng, L. K. Chau, and C. R. C. Wang, “Sensing capability of the localized surface plasmon resonance of gold nanorods,” Biosens. Bioelectron. 22(6), 926–932 (2007).
  10. J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sönnichsen, “Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano Lett. 8(6), 1719–1723 (2008). [PubMed]
  11. J. M. McLellan, A. Siekkinen, J. Chen, and Y. Xia, “Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes,” Chem. Phys. Lett. 427(1-3), 122–126 (2006).
  12. S. L. Zhu, C. L. Du, and Y. Q. Fu, “Fabrication and characterization of rhombic silver nanoparticles for biosensing,” Opt. Mater. 31(6), 769–774 (2009).
  13. G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
  14. B. J. Wiley, Y. Chen, J. M. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7(4), 1032–1036 (2007). [PubMed]
  15. Y. Xia, N. J. Halas, and G. Editors, “Shape-Controlled Synthesis and Surface Plasmonic Properties of Metallic Nanostructures,” MRS Bull. 30, 338–348 (2005).
  16. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008). [PubMed]
  17. A. Taflove, and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, (Arthech House, London, 2000).
  18. E. D. Palik, Handbook of optical constants of solids III, (Academic Press, 1998).
  19. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  20. C. Bohren, and D. Huffman, Absorption and Scattering of Light by Small Particles, (J. Wiley, New York, 1983).
  21. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. V. Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
  22. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005). [PubMed]
  23. V. F. Weisskopf, “Recent development in the theory of the electron,” Rev. Mod. Phys. 21(2), 305–315 (1949).
  24. C. L. Haynes and R. P. V. Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited