OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14977–14992

Probabilistic atlas can improve reconstruction from optical imaging of the neonatal brain

Juha Heiskala, Mika Pollari, Marjo Metsäranta, P. Ellen Grant, and Ilkka Nissilä  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 14977-14992 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2410 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diffuse optical imaging is an emerging medical imaging modality based on near-infrared and visible red light. The method can be used for imaging activations in the human brain. In this study, a deformable probabilistic atlas of the distribution of tissue types within the term neonatal head was created based on MR images. The use of anatomical prior information provided by such atlas in reconstructing brain activations from optical imaging measurements was studied using Monte Carlo simulations. The results suggest that use of generic anatomical information can greatly improve the spatial accuracy and robustness of the reconstruction when noise is present in the data.

© 2009 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 1, 2009
Revised Manuscript: May 21, 2009
Manuscript Accepted: July 22, 2009
Published: August 10, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Juha Heiskala, Mika Pollari, Marjo Metsäranta, P. Ellen Grant, and Ilkka Nissilä, "Probabilistic atlas can improve reconstruction from optical imaging of the neonatal brain," Opt. Express 17, 14977-14992 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci. 20, 435-442 (1997) [CrossRef] [PubMed]
  2. J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004) [CrossRef] [PubMed]
  3. A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate," NeuroImage 30, 521-528 (2006) [CrossRef]
  4. S. Chandrasekhar, Radiative transfer (Dover, New York 1960)
  5. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, "A Monte Carlo model of light propagation in tissue," Dosimetry of Laser Radiation in Medicine and Biology (SPIE IS Vol 5) G. J. Müller and D. H. Sliney, eds. (SPIE, Bellingham WA, 1989) 102-111
  6. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A Finite Element Approach for Modeling Photon Transport in Tissue," Med. Phys. 20, 299-309 (1993) [CrossRef] [PubMed]
  7. D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, S275-S288 (2004) [CrossRef] [PubMed]
  8. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, "Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons," Appl. Opt. 43, 3037-3047 (2004) [CrossRef] [PubMed]
  9. S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas: "Bedside functional imaging of the premature infant brain during passive motor activation," J. Perinat. Med. 29, 335-343 (2001) [CrossRef] [PubMed]
  10. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, "Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography," Proc. Nat. Acad. Sci 104, 12169-74 (2007) [CrossRef] [PubMed]
  11. J. Heiskala, P. Hiltunen, and I. Nissilä, "Significance of background optical properties, time-resolved information, and optode arrangement in diffuse optical imaging of term neonates," Phys. Med. Biol. 54, 535-554 (2009) [CrossRef] [PubMed]
  12. B. W. Pogue and K. D. Paulsen, "High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information," Opt. Lett. 23, 1716-1718 (1998) [CrossRef]
  13. M. Schweiger and S. R. Arridge, "Optical tomographic reconstruction in a complex head model using a priori region boundary information," Phys. Med. Biol. 44, 2703-2721 (1999) [CrossRef] [PubMed]
  14. M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-2858 (2005) [CrossRef] [PubMed]
  15. J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, and J. Lancaster, "A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM)," NeuroImage 2, 89-101 (1995) [CrossRef] [PubMed]
  16. P. M. Thompson, D. MacDonald, M. S. Mega, C. J. Holmes, A. C. Evans, and A. W. Toga, "Detection and Mapping of Abnormal Brain Structure with a Probabilistic Atlas of Cortical Surfaces," J. Comput. Assist. Tomogr. 21, 567-581 (1997) [CrossRef] [PubMed]
  17. B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron 33, 341-355 (2002) [CrossRef] [PubMed]
  18. M. Okamoto and I. Dan, "Automated cortical projection transcranial functional brain of head-surface locations for mapping," NeuroImage 26, 18-28 (2005) [CrossRef] [PubMed]
  19. A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, and I. Dan, "Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI," NeuroImage 27, 842-851 (2005) [CrossRef] [PubMed]
  20. D. Tsuzuki, V. Jurcak, A. K. Singh, M. Okamoto, E. Watanabe, and I. Dan, "Virtual spatial registration of standalone MRS data to MNI space," NeuroImage 34, 1506-1518 (2007) [CrossRef] [PubMed]
  21. A. CustoPurely Optical Tomography: Atlas-Based Reconstruction of Brain Activation, PhD thesis, Massachusetts Institute of Technology (2008)
  22. H. Kawaguchi and E. Okada, "Normalized Adult Head Model for the Image Reconstruction Algorithm of NIR Topography," in Biomedical Optics OSA Technical Digest (CD) (Optical Society of America, 2008), paper BSuE38.
  23. J. Heiskala, K. Kotilahti, L. Lipi¨ainen, P. Hiltunen, P. E. Grant, and I. Nissilä, "Optical tomographic imaging of activation of the infant auditory cortex using perturbation Monte Carlo with anatomical a priori information," in Diffuse Optical Imaging in Tissue Proc. SPIE 6629, (Bellingham: SPIE) 66290T (2007)
  24. J. Koikkalainen and J. Lötjönen, "Reconstruction of 3-D head geometry from digitized point sets: an evaluation study," IEEE Trans. Inf. Technol. Biomed. 8, 377-386 (2004) [CrossRef] [PubMed]
  25. F. SchmidtDevelopment of a time-resolved optical tomography system for neonatal brain imaging, PhD thesis, University of London (1999)
  26. Y. Fukui, Y. Ajichi, and E. Okada, "Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models," Appl. Opt. 42, 2881-2887 (2003) [CrossRef] [PubMed]
  27. E. Okada and D. T. Delpy, "The effect of overlying tissue on NIR light propagation in neonatal brain," Proc. OSA TOPS, Adv. Opt. Imaging Photon Migration 2, 338-343 (1996)
  28. C. Hayakawa, J. Spanier, F. Bevilacqua, A. Dunn, J. You, B. Tromberg, and V. Venugopalan, "Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues," Opt. Lett. 26, 1335-1337 (2001) [CrossRef]
  29. P. Kumar and R. M. Vasu, "Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method," J. Biomed. Opt. 9, 1002-1012 (2004) [CrossRef] [PubMed]
  30. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, "Determining changes in NIR absorption using a layered model of the human head," Phys. Med. Biol. 46, 879-96 (2001) [CrossRef] [PubMed]
  31. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, "Time-resolved optical imager for assessment of cerebral oxygenation," J. Biomed. Opt. 12, 034019 (2007) [CrossRef]
  32. S. R. Arridge, "Photon-measurement density-functions I: Analytical forms," Appl. Opt. 34, 7395-7409 (1995) [CrossRef] [PubMed]
  33. A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," NeuroImage 27, 279-290 (2005) [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited