OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14993–15000

Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires

Luis Javier Martínez, Benito Alén, Ivan Prieto, David Fuster, Luisa González, Yolanda González, María Luisa Dotor, and Pablo Aitor Postigo  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 14993-15000 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1696 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present continuous wave laser emission in a photonic crystal microcavity operating at 1.5 µm at room temperature. The structures have been fabricated in an InP slab including a single layer of self-assembled InAs/InP quantum wires (QWrs) as active material. Laser emission in air suspended membranes with thresholds of effective optical pump power of 22 µWand quality factors up to 55000 have been measured.

© 2009 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: April 30, 2009
Revised Manuscript: July 11, 2009
Manuscript Accepted: July 13, 2009
Published: August 10, 2009

Luis Javier Martinez, Benito Alén, Ivan Prieto, David Fuster, Luisa González, Yolanda González, María Luisa Dotor, and Pablo A. Postigo, "Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires," Opt. Express 17, 14993-15000 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Englund, H. Altug, B. Ellis, and J. Vu?kovi?, "Ultrafast photonic crystal lasers," Laser & Photon. Rev.,  2, 264-274 (2008). [CrossRef]
  2. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  3. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  4. C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Quantum Electron. 11, 395-407 (2005). [CrossRef]
  5. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  6. D. Gerace, and L. C. Andreani, "Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs," Photon. Nanostruct. Fundam. Appl. 3, 120-128 (2005). [CrossRef]
  7. S. Noda, "Seekeing the Ultimate Nanolaser," Science 314, 260-261 (2006). [CrossRef] [PubMed]
  8. B. Alén, J. Martínez-Pastor, A. García-Cristobal, L. González, and J. M. García, "Optical transitions and excitonic recombination in InAs/InP self-assembled quantum wires," Appl. Phys. Lett. 78, 4025-4027 (2001). [CrossRef]
  9. A. Yariv, "Scaling laws and minimum threshold currents for quantum-confined semiconductor lasers," Appl. Phys. Lett. 53, 1033-1035 (1988). [CrossRef]
  10. M. Asada, Y. Mayimoto, and Y. Suematsu, "Theoretical Gain of Quamtun-WellWire Lasers," Jpn. J. Appl. Phys.  24, L95-L97, (1985). [CrossRef]
  11. Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 24939-941 (1982). [CrossRef]
  12. Y. Arakawa, K. Vahala, A. Yariv, and K. Lau, "Reduction of the spectral linewidth of semiconductor lasers with quantum wire effects—Spectral properties of GaAlAs double heterostructure lasers in high magnetic fields, " Appl. Phys. Lett. 48, 384-386 (1986). [CrossRef]
  13. C. Seassal, X. Letartre, J. Brault, M. Gendry, P. Pottier, P. Viktorovitch, O. Piquet, P. Blody, D. Cros, and O. Marty, "InAs quantum wires in InP-based microdisks: Mode identification and continuous wave room temperature laser operation," J. Appl. Phys. 88, 6170-6174 (2000). [CrossRef]
  14. D. Fuster, L. González, Y. González, María Ujué González, and J. Martínez-Pastor, "Size and emission wavelength control of InAs/InP quantum wires," J. Appl. Phys. 98, 033502 (2005). [CrossRef]
  15. R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, "Long-Wavelength InP-Based Quantum-Dash Lasers," IEEE Photonics Technol. Lett. 14, 735-737 (2002). [CrossRef]
  16. K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon,"Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity," Appl. Phys. Lett. 90, 153107 (2007). [CrossRef]
  17. D. Fuster, B. Alén, L. González, Y. González, J. Martínez-Pastor, M. U. González, and J. M. García, "Isolated self-assembled InAs/InP(001) quantum wires obtained by controlling the growth front evolution," Nanotechnology 18, 035604 (2007). [CrossRef] [PubMed]
  18. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers," Phys. Rev. Lett. 96, 127404 (2006). [CrossRef] [PubMed]
  19. J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B. 72, 193303 (2005). [CrossRef]
  20. T. Yoshie, O.B. Shchekin, H. Chen, D.G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002).
  21. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006). [CrossRef] [PubMed]
  22. M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B 75, 195313 (2007). [CrossRef]
  23. B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, "Room-temperature InAs/InP Quantum Dots laser operation based on heterogeneous "2.5 D" Photonic Crystal," Opt. Express 14, 9269-9276 (2006). [CrossRef] [PubMed]
  24. F. Bordas, Ch. Seassal, E. Dupuy, Ph. Regreny, M. Gendry, P. Viktorovitch, M. J. Steel, and A. Rahmani, "Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 ?m using cavity-confined slow light," Opt. Express 17, 5439-5445 (2009). [CrossRef] [PubMed]
  25. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007). [CrossRef] [PubMed]
  26. Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, and E. L. Hu, C. Meier,"GaN blue photonic crystal membrane nanocavities," Appl. Phys. Lett. 87, 243101 (2005). [CrossRef]
  27. Se-Heon Kim, Guk-Hyun Kim, Sun-Kyung Kim, Hong-Gyu Park, Yong-Hee Lee, and Sung-Bock Kim, "Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab," J. Appl. Phys. 95, 411 (2004). [CrossRef]
  28. L. C. Andreani and D. Gerace, "Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method," Phys. Rev. B 73, 235114 (2006). [CrossRef]
  29. Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu,"Evolution of the onset of coherence in a family of photonic crystal nanolasers," Appl. Phys. Lett. 91, 031108 (2007). [CrossRef]
  30. Lumerical Solutions, Inc., Vancouver, BC, Canada (2004).
  31. A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, "Mode structure of the L3 photonic crystal cavity," Appl. Phys. Lett. 90, 241117 (2007). [CrossRef]
  32. L. J. Martínez, I. Prieto, B. Alén, and P. A. Postigo, "Fabrication of high quality factor photonic crystal microcavities in InAsP/InP membranes combining reactive ion beam etching and reactive ion etching," J. Vac. Tech. B 27, 1801-1804 (2009). [CrossRef]
  33. K.A. Atlasov, K.F. Karlsson, P. Gallo, A. Rudra, B. Dwir, E. Kapon, "Observation of stimulated emission and lasing in quantum-wire photonic-crystal nanocavities," in Proc. IEEE/LEOS Winter Topicals Meeting Series 2009, 4-5 (2009). [CrossRef]
  34. J. Canet-Ferrer et al, Manuscript in preparation.
  35. K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, "Ultralow Threshold and Single-Mode Lasing in Microgear Lasers and Its Fusion With Quasi-Periodic Photonic Crystals," IEEE J. Quantum Electron. 9, 1355-1360 (2003). [CrossRef]
  36. E. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, INC., Orlando, Florida, USA, 1985).
  37. R. Hostein, R. Braive, M. Larque, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, "Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band," Appl. Phys. Lett. 94, 123101 (2009). [CrossRef]
  38. H. Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067 (2004). [CrossRef]
  39. H. Altug, and J. Vu?kovi?, "Photonic crystal nanocavity array laser," Opt. Express 13, 8819-8828 (2005). [CrossRef] [PubMed]
  40. K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, "Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate," Opt. Express 17, 7036-7042 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited