OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 15023–15031

Temperature analysis of low-expansion Fabry-Perot cavities

Richard W. Fox  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 15023-15031 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (738 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Temperature dependent structural distortion at the contacted mirrors of low-expansion glass cavities can introduce changes to the cavity length independent of the length of the spacer. There are resulting temperature sensitivities of the path (m/K) at each end of a cavity that are proportional to the difference of the coefficient of thermal expansion (α) at the contact. The temperature sensitivity of the resonant frequency can be a minimum at a temperature TC if the product of length times α(TC) of the spacer approximately offsets the combined sensitivities of the ends, even if α(TC) of the spacer is significantly nonzero.

© 2009 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(160.2750) Materials : Glass and other amorphous materials

ToC Category:

Original Manuscript: June 1, 2009
Revised Manuscript: July 22, 2009
Manuscript Accepted: July 23, 2009
Published: August 10, 2009

Richard W. Fox, "Temperature analysis of low-expansion Fabry-Perot cavities," Opt. Express 17, 15023-15031 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Ch. Eisele, M. Okhapkin, A. Yu. Nevsky, and S. Schiller, “A crossed optical cavities apparatus for a precision test of the isotropy of light propagation,” Opt. Commun. 281(5), 1189–1196 (2008). [CrossRef]
  2. A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1x10(-15).,” Opt. Lett. 32(6), 641–643 (2007). [CrossRef] [PubMed]
  3. ULE and TSG are trademarks of Corning Inc., and mention here is for technical clarity only and does not imply endorsement.
  4. S. A. Webster, M. Oxborrow, S. Pugla, J. Millo, and P. Gill, “Thermal-noise-limited optical cavity,” Phys. Rev. A 77(3), 033847 (2008). [CrossRef]
  5. N. M. Sampas, E. K. Gustafson, and R. L. Byer, “Long-term stability of two diode-laser-pumped nonplanar ring lasers independently stabilized to two Fabry-Perot interferometers,” Opt. Lett. 18(12), 947–949 (1993). [CrossRef] [PubMed]
  6. N. Poli, R. E. Drullinger, G. Ferrari, M. Prevedelli, F. Sorrentino, M. G. Tarallo, and G. M. Tino, “Prospect for a compact strontium optical lattice clock,” Proc. SPIE 6673 (2007).
  7. J. Alnis, A. Matveev, N. Kolachevsky, T. Wilken, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008). [CrossRef]
  8. S. F. Jacobs, J. W. Berthold, and J. Osmundsen, “Ultraprecise measurement of thermal expansion coefficients – recent progress,” AIP conf. Proceedings, New York (1970).
  9. M. Notcutt, C. T. Taylor, A. G. Mann, and D. G. Blair, “Temperature compensation for cryogenic cavity stabilized lasers,” J. Phys. D Appl. Phys. 28(9), 1807–1810 (1995). [CrossRef]
  10. K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93(25), 250602 (2004). [CrossRef]
  11. J. W. Berthold and S. F. Jacobs, “Ultraprecise thermal expansion measurements of seven low expansion materials,” Appl. Opt. 15(10), 2344–2347 (1976). [CrossRef]
  12. S. F. Jacobs, “Dimensional stability of materials useful in optical engineering,” Opt. Acta (Lond.) 33(11), 1377–1388 (1986). [CrossRef]
  13. H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34(4), 667–675 (1995). [CrossRef] [PubMed]
  14. Based on the slope of the phase of the Ta2O5-SiO2 coatings used here, 10 mr/nm, and a spectral shift of such coatings on low expansion glass of Δν/ν ~−10−5 K−1 [13].
  15. A. E. Siegman, Lasers, (University Research Books, 1986).
  16. M. Fukuhara and A. Sampei, “Effects on high-temperature-elastic properties on α-/β-quartz phase transition of fused quartz,” J. Mater. Sci. Lett. 18(10), 751–753 (1999). [CrossRef]
  17. R. R. VanBrocklin, M. J. Edwards, and B. Wells, “Review of Corning’s capabilities for ULE mirror blank manufacturing for an extremely large telescope,” Proc. SPIE 6273–01, 1–11 (2006).
  18. Fused Silica CTE from 5 − 35 C adapted from the expression in SRM 739: http://ts.nist.gov/MeasurementServices/ReferenceMaterials/archived_certificates/739.pdf
  19. ULE and TSG Product Information Sheets, Corning Advanced Optics, 334 County Rt., 16, Canton, New York 13617 (2006). http://www.corning.com/docs/specialtymaterials/pisheets/TSGBro91106.pdf http://www.corning.com/docs/specialtymaterials/pisheets/UleBro91106.pdf
  20. M. Edwards, Corning Inc., private communication, α(T) = K0 + 2.21T - 0.0122T2 + 1.88e-5T3 ppb/K, T in Celsius (2006).
  21. R. W. Fox, “Fabry-Perot temperature dependence and surface-mounted optical cavities,” Proc. SPIE 7099 (2008). (available as arXiv:0807.0656v1 [physics.optics]).
  22. Ansys Workbench Simulation, V11.0. Mentioned only for technical clarity, no endorsement implied.
  23. D. Coyne, “Beamsplitter coating strain induced radius of curvature,” LIGO document LIGO-T050057–00-D (2005).
  24. M. Okaji, N. Yamada, K. Nara, and H. Kato, “Laser interferometric dilatometer at low temperatures: application to fused silica SRM 739,” Cryogenics 35(12), 887–891 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited