OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 15032–15042

Structural control of nonlinear optical absorption and refraction in dense metal nanoparticle arrays

Dana C. Kohlgraf-Owens and Pieter G. Kik  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 15032-15042 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The linear and nonlinear optical properties of a composite containing interacting spherical silver nanoparticles embedded in a dielectric host are studied as a function of interparticle separation using three dimensional frequency domain simulations. It is shown that for a fixed amount of metal, the effective third-order nonlinear susceptibility of the composite χ(3)(ω) can be significantly enhanced with respect to the linear optical properties, due to a combination of resonant surface plasmon excitation and local field redistribution. It is shown that this geometry-dependent susceptibility enhancement can lead to an improved figure of merit for nonlinear absorption. Enhancement factors for the nonlinear susceptibility of the composite are calculated, and the complex nature of the enhancement factors is discussed.

© 2009 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(160.1245) Materials : Artificially engineered materials
(260.2065) Physical optics : Effective medium theory
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: June 3, 2009
Revised Manuscript: August 5, 2009
Manuscript Accepted: August 6, 2009
Published: August 10, 2009

Dana C. Kohlgraf-Owens and Pieter G. Kik, "Structural control of nonlinear optical absorption and refraction in dense metal nanoparticle arrays," Opt. Express 17, 15032-15042 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007). [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  3. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007). [CrossRef] [PubMed]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  6. K. Tsuchiya, S. Nagayasu, S. Okamoto, T. Hayakawa, T. Hihara, K. Yamamoto, I. Takumi, S. Hara, H. Hasegawa, S. Akasaka, and N. Kosikawa, “Nonlinear optical properties of gold nanoparticles selectively introduced into the periodic microdomains of block copolymers,” Opt. Express 16(8), 5362–5371 (2008). [CrossRef] [PubMed]
  7. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992). [CrossRef] [PubMed]
  8. M. I. Stockman, K. B. Kurlayev, and T. F. George, “Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory,” Phys. Rev. B 60(24), 17071–17083 (1999). [CrossRef]
  9. D. Stroud and P. M. Hui, “Nonlinear susceptibilities of granular matter,” Phys. Rev. B 37(15), 8719–8724 (1988). [CrossRef]
  10. H. Ditlbacher, N. Felidj, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Electromagnetic interaction of fluorophores with designed two-dimensional silver nanoparticle arrays,” Appl. Phys. B 73(4), 373–377 (2001). [CrossRef]
  11. A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, “Enhanced two-photon fluorescence of molecules adsorbed on silver particle films,” Phys. Rev. B 24(8), 4906–4909 (1981). [CrossRef]
  12. W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five Orders-of-Magnitude Enhancement of Two-Photon Absorption for Dyes on Silver Nanoparticle Fractal Clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002). [CrossRef]
  13. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008). [CrossRef]
  14. R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photonics Nanostruct. Fundam. Appl. 3(2-3), 116–119 (2005). [CrossRef]
  15. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73(10), 1368–1371 (1994). [CrossRef] [PubMed]
  16. D. C. Kohlgraf-Owens and P. G. Kik, “Numerical study of surface plasmon enhanced nonlinear absorption and refraction,” Opt. Express 16(14), 10823–10834 (2008). [CrossRef] [PubMed]
  17. G. Piredda, D. D. Smith, B. Wendling, and R. W. Boyd, “Nonlinear optical properties of a gold-silica composite with high gold fill fraction and the sign change of its nonlinear absorption coefficient,” J. Opt. Soc. Am. B 25(6), 945–950 (2008). [CrossRef]
  18. H. B. Liao, W. Wen, and G. K. L. Wong, “Preparation and characterization of Au/SiO2 multilayer composite films with nonspherical Au particles,” Appl. Phys., A Mater. Sci. Process. 80(4), 861–864 (2005). [CrossRef]
  19. N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395–402 (2002). [CrossRef]
  20. O. Maruyama, Y. Senda, and S. Omi, “Non-linear optical properties of titanium dioxide films containing dispersed gold particles,” J. Non-Cryst. Solids 259(1-3), 100–106 (1999). [CrossRef]
  21. G. Ma, W. Sun, S.-H. Tang, H. Zhang, Z. Shen, and S. Qian, “Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices,” Opt. Lett. 27(12), 1043–1045 (2002). [CrossRef]
  22. J. Jayabalan, A. Singh, R. Chari, and S. M. Oak, “Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs,” Nanotechnology 18(31), 315704 (2007). [CrossRef]
  23. O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers,” Phys. Rev. B 56(13), 8035–8046 (1997). [CrossRef]
  24. J. C. M. Garnett, ““Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. London Ser. A 203(1), 385–420 (1904). [CrossRef]
  25. H. R. Ma, R. F. Xiao, and P. Sheng, “Third-order optical nonlinearity enhancement through composite microstructures,” J. Opt. Soc. Am. B 15(3), 1022–1029 (1998). [CrossRef]
  26. R. del Coso and J. Solis, “Relation between nonlinear refractive index and third-order susceptibility in absorbing media,” J. Opt. Soc. Am. B 21(3), 640–644 (2004). [CrossRef]
  27. P. B. Johnson and R. W. Christy, “Optical-Constants Of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  28. Microwave Studio, Computer Simulation Technology, Darmstadt, Germany.
  29. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002). [CrossRef]
  30. D. D. Smith, G. Fischer, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14(7), 1625–1631 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited