OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 15043–15051

Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure

Luis Javier Martínez, Benito Alén, Ivan Prieto, J.F. Galisteo-López, Matteo Galli, Lucio Claudio Andreani, Christian Seassal, Pierre Viktorovitch, and Pablo Aitor Postigo  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 15043-15051 (2009)
http://dx.doi.org/10.1364/OE.17.015043


View Full Text Article

Enhanced HTML    Acrobat PDF (700 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present laser emission of a compact surface-emitting micro laser, optical pumped and operating at 1.5 µm at room temperature. A two-dimensional photonic crystal lattice conformed in a hybrid triangular-graphite configuration is designed for vertical emission. The structures have been fabricated in an InP slab, including four InAsP quantum wells as active layer, on the top of a Si substrate SiO2 wafer bonded. Laser emission with thresholds around 70 µW and quality factors (Qs) up to 12000 have been measured. The Bloch mode selected for the emission keeps a high Q (≥2×105) around the Γ point for a wide range of in-plane values k≤0.1(2π/a) which is related to peculiar properties of the hybrid lattice.

© 2009 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(250.5300) Optoelectronics : Photonic integrated circuits
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: June 10, 2009
Revised Manuscript: July 18, 2009
Manuscript Accepted: July 20, 2009
Published: August 10, 2009

Citation
Luis Javier Martínez, Benito Alén, Ivan Prieto, J. F. Galisteo-López, Matteo Galli, Lucio Claudio Andreani, Christian Seassal, Pierre Viktorovitch, and Pablo Aitor Postigo, "Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure," Opt. Express 17, 15043-15051 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-15043


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science,  284, 1819-1821, (1999). [CrossRef] [PubMed]
  4. S-H Kim, H-Y Ryu, H-G Park, G-H Kim, Y-S Choi, Y-H Lee, and J-S Kim, "Two-dimensional photonic crystal hexagonal waveguide ring laser," Appl. Phys. Lett. 81, 2499-2501 (2002). [CrossRef]
  5. A. R. Alija, L. J. Martínez, P. A. Postigo, C. Seassal, and P. Viktorovitch, "Coupled-cavity two-dimensional photonic crystal waveguide ring laser," Appl. Phys. Lett. 89, 101102 (2006). [CrossRef]
  6. X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, "Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures," J. Opt. Soc. Am. B 22, 2581-2595 (2005). [CrossRef]
  7. S. Boutami, B. Ben. Bakir, L-L Leclercq, X. Letartre, Ch. Seassal, P. Rojo-Romero, P. Regreny, M. Garriges, and P. Viktorovitch, "Photonic Crystal-Based MOEMS Devices," IEEE J. Quantum Electron. 13, 244-252 (2007). [CrossRef]
  8. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers," Phys. Rev. Lett. 96, 127404 (2006). [CrossRef] [PubMed]
  9. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP based 2-D photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002). [CrossRef]
  10. S-H Kwon, H-Y Ryu, G-H Kim, Y-H Lee, and S-B Kim, "Photonic bandedge lasers in two-dimensional squarelattice photonic crystal slabs," Appl. Phys. Lett. 83, 3870-3872 (2003).
  11. H-Y Ryu, S-H Kwon, Y-J Lee, Y-H Lee, and J-S Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002). [CrossRef]
  12. J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003). [CrossRef]
  13. Y. Park, S. Kim, Ch. Moon, H. Jeon, and H. Jin Kim, "Butt-end fiber coupling to a surface-emitting ?-point photonic crystal band edge laser," Appl. Phys. Lett. 90, 171115 (2007). [CrossRef]
  14. L. J. Martínez, A. García-Martín, and P. Postigo, "Photonic band gaps in a two-dimensional hybrid triangulargraphite lattice," Opt. Express 12, 5684-5689 (2004). [CrossRef] [PubMed]
  15. A. R. Alija, L. J. Marínez, P. A. Postigo, J. Sánchez-Dehesa, M. Galli, A. Politi, M. Patrini, L. C. Andreani, C. Seassal, and P. Viktorovitch, "Theoretical and experimental study of the Suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy," Opt. Express 15, 704-713 (2007). [CrossRef] [PubMed]
  16. S. David, A. Chelnokov, and J.-M. Lourtioz, "Isotropic Photonic Structures: Archimedean-Like Tilings and Quasi-Crystals," IEEE J. Quantum Electron. 37, 1427-1434 (2001). [CrossRef]
  17. H. Altug and J. Vu?kovi?, "Two-dimensional coupled photonic crystal resonator arrays," Appl. Phys. Lett. 84, 161-163 (2004). [CrossRef]
  18. L. C. Andreani and D. Gerace, "Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method," Phys. Rev. B,  73, 235114 (2006). [CrossRef]
  19. L. J. Martínez, A. R. Alija, P. A. Postigo, J. F. Galisteo-López, M. Galli, L. C. Andreani, Ch. Seassal, and P. Viktorovitch, "Effect of implementation of a Bragg reflector in the photonic band structure of the Suzuki-phase photonic crystal lattice," Opt. Express 16, 8509-8518 (2008). [CrossRef] [PubMed]
  20. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005). [CrossRef]
  21. C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Quantum Electron. 11, 395-407 (2005). [CrossRef]
  22. L. J. Martínez, I. Prieto, B. Alén, and P. A. Postigo, "Fabrication of high quality factor photonic crystal microcavities in InAsP/InP membranes combining reactive ion beam etching and reactive ion etching," J. Vac. Tech. B 27, 1801-1804 (2009). [CrossRef]
  23. T. Baba and D. Sano, "Low-threshold lasing and Purcell effect in microdisk lasers at room temperature," IEEE J. Quantum Electron. 10, 1340-1346 (2003).
  24. E. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, INC., Orlando, Florida, USA, 1985).
  25. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, C. Gmachl, "Experimental demonstration of a high-Q photonic crystal microcavity," Appl. Phys. Lett.  83, 1915-1917 (2003). [CrossRef]
  26. C. Wilmsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface-Emitting Lasers, (Cambridge University Press, Cambridge UK, 1999).
  27. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering of InP-based two dimensional photonic crystal microlasers on a silicon wafer," IEEE J. Quantum Electron. 39, 419-425 (2003). [CrossRef]
  28. D. Kuksenkov, S. Feld, C. Wilmsen, H. Temkin, S. Swirhun, and R. Leibenguth, "Linewidth and alpha-factor in AlGaAs/GaAs vertical cavity surface emitting lasers," Appl. Phys. Lett.,  66, 277-279 (1995). [CrossRef]
  29. B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, "Room-temperature InAs/InP Quantum Dots laser operation based on heterogeneous "2.5 D" Photonic Crystal," Opt. Express 14, 9269-9276 (2006). [CrossRef] [PubMed]
  30. F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, "Tuning of a two-dimensional photonic crystal resonance via optical carrier injection," Opt. Lett. 30, 64-66 (2005). [CrossRef] [PubMed]
  31. L. Ferrier, O. El Daif, X. Letartre, P. Rojo-Romeo, Ch. Seassal, R. Mazurczyk, and P. Viktorovitch, "Surface emitting microlaser based on 2D photonic crystal rod lattices," Opt. Express 17, 9780-9788 (2009). [CrossRef] [PubMed]
  32. L. Ferrier, P. Rojo-Romero, E. Drouard, X. Letartre, and P. Viktorovitch, "Slow Bloch mode confinement in 2D photonic crystals for surface operating devices," Opt. Express 16, 3136-3145 (2008). [CrossRef] [PubMed]
  33. F. Bordas, M. J. Steel, Ch. Seassal, and A. Rahmani, "Confinement of band-edge modes in a photonic crystal slab," Opt. Express 15, 10890-10902 (2007). [CrossRef] [PubMed]
  34. F. Bordas, Ch. Seassal, E. Dupuy, Ph. Regreny, M. Gendry, P. Viktorovitch, M. J. Steel, and A. Rahmani, "Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 ?m using cavity-confined slow light," Opt. Express 17, 5439-5445 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited