OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 15072–15086

Terahertz Near-Field Vectorial Imaging of Subwavelength Apertures and Aperture Arrays

J. R. Knab, A. J. L. Adam, M. Nagel, E. Shaner, M. A. Seo, D. S. Kim, and P. C. M. Planken  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 15072-15086 (2009)
http://dx.doi.org/10.1364/OE.17.015072


View Full Text Article

Enhanced HTML    Acrobat PDF (1541 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present measurements of the complete terahertz (THz) electric near-field distribution, Ex , Ey and Ez , in both the time- and frequency-domains, for subwavelength apertures and subsections of subwavelength aperture arrays. Measuring the individual components of the THz near-field with subwavelength spatial resolution, as they emerge from these structures, illustrates how the field interacts with the apertures. We observe the small but measurable y- and z-components of the electric field for both single apertures and arrays. Resonant contributions, attributed to Bloch modes, are detected and we observe the presence of a longitudinal field component, Ez , within the different array apertures, which can be attributed to a diffractive effect. These measurements illustrate in detail the individual THz field components emerging from subwavelength apertures and provide a direct measure of two important mechanisms that contribute to the net transmission of light through arrays.

© 2009 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.6624) Diffraction and gratings : Subwavelength structures
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 19, 2009
Revised Manuscript: August 7, 2009
Manuscript Accepted: August 7, 2009
Published: August 11, 2009

Citation
J. R. Knab, A. J. L. Adam, M. Nagel, E. Shaner, M. A. Seo, D. S. Kim, and P. C. M. Planken, "Terahertz Near-Field Vectorial Imaging of Subwavelength Apertures and Aperture Arrays," Opt. Express 17, 15072-15086 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-15072


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
  2. A. Degiron and T. W. Ebbesen, "The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures," J. Opt. A. Pure Appl. Opt. 7, S90-S96 (2005).
  3. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
  4. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
  5. Z. Ruan and M. Qiu, "Enhanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances," Phys. Rev. Lett. 96, 233901 (2006). [PubMed]
  6. J. Masson, A. Podzorov, and G. Gallot, "Anomalies in the disappearance of the extraordinary electromagnetic transmission in subwavelength hole arrays," Opt. Express 16, 4719-4730 (2008). [PubMed]
  7. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92, 183901 (2004).
  8. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature (London) 445, 39-46 (2007).
  9. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, "A New Generation of Sensors Based on Extraordinary Optical Transmission," Acct. Chem. Res. 41, 1049-1057 (2008).
  10. T. Ribaudo, E. A. Shaner, S. S. Howard, C. Gmachl, X. J. Wang, F.-S. Choa, and D. Wasserman, "Active control and spatial mapping of mid-infrared propagating surface plasmons," Opt. Express 17, 7019-7024 (2009). [PubMed]
  11. C.-C. Chen, "Transmission of Microwave Through Perforated Flat Plates of Finite Thickness," IEEE Trans. Microwave Theory Tech. MTT-21, 1-6 (1973).
  12. R. Ulrich and M. Tacke, "Submillimeter waveguiding on periodic metal structure," Appl. Phys. Lett. 22, 251-253 (1973).
  13. A. Mitsuishi, Y. Otsuka, S. Fujita, and H. Yoshinaga, "Metal Mesh Filters in the Far Infrared Region," Japanese J. Appl. Phys. 2, 574-577 (1963).
  14. C.-C. Chen, "Transmission Through a Conducting Screen Perforated Periodically with Apertures," IEEE Trans. Microwave Theory Tech. MTT-18, 627-632 (1970).
  15. J. G’omez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68, 201306 (2003).
  16. D. Qu, D. Grischkowsky, and W. Zhang, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Opt. Lett. 29, 896-898 (2004). [PubMed]
  17. H. Cao and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express 12, 1004-1010 (2004). [PubMed]
  18. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G’omez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, "Optical Control over Surface-Plasmon-Polariton-Assisted THz Transmission through a Slit Aperture," Phys. Rev. Lett. 100, 123901 (2008). [PubMed]
  19. A. K. Azad, Y. Zhao, W. Zhang, and M. He, "Effect of dielectric properties of metals on terahertz transmission in subwavelength hole arrays," Opt. Lett. 31, 2637-2639 (2006). [PubMed]
  20. D. Qu and D. Grischkowsky, "Observation of a New Type of THz Resonance of Surface Plasmons Propagating on Metal-Film Hole Arrays," Phys. Rev. Lett. 93, 196804 (2004). [PubMed]
  21. H. Cao and A. Nahata, "Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures," Opt. Express 12, 3664-3672 (2004). [PubMed]
  22. S. Ducourtieux, S. Gr’esillon, J. C. Rivoal, C. Vannier, C. Bainier, D. Courjon, and H. Cory, "Imaging subwavelength holes in chromium films in scanning near-field optical microscopy. Comparison between experiments and calculation," Eur. Phys. J. Appl. Phys. 26, 35-43 (2004).
  23. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, "Near field imaging of terahertz focusing onto rectangular apertures," Opt. Express 16, 20484-20489 (2008). [PubMed]
  24. O. Mitrofanov, M. Lee, J. W. P. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, "Terahertz pulse propagation through small apertures," Appl. Phys. Lett. 79, 907-909 (2001).
  25. A. Bitzer and M. Walther, "Terahertz near-field imaging of metallic subwavelength holes and hole arrays," Appl. Phys. Lett. 92, 231101 (2008).
  26. A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, "Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial," Opt. Express 17, 3826-3834 (2009). [PubMed]
  27. A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. M. Planken, "Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures," Opt. Express 16, 7407-7417 (2008). [PubMed]
  28. M. Mrejen, A. Israel, H. Taha, M. Palchan, and A. Lewis, "Near-field characterization of extraordinary optical transmission in sub-wavelength aperture arrays," Opt. Express 15, 9129-9138 (2007). [PubMed]
  29. H. Gao, J. Henzie, and T. W. Odom, "Direct Evidence for Surface Plasmon-Mediated Enhanced Light Transmission through Metallic Nanohole Arrays," Nano Lett. 6, 2104-2108 (2006). [PubMed]
  30. S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. M¨uller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: Surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
  31. G. Zhao, R. N. Schouten, N. C. J. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002).
  32. R. Chakkittakandy, J. A. Corver, and P. C. M. Planken, "Quasi-near field terahertz generation and detection," Opt. Express 16, 12794-12805 (2008). [PubMed]
  33. N. C. J. van der Valk, T. Wenckebach, and P. C. M. Planken, "Full mathematical description of electro-optic detection in optically isotropic crystals," J. Opt. Soc. Am. B 21, 622-631 (2004).
  34. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, "Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors," Opt. Express 15, 11781-11789 (2007). [PubMed]
  35. C. J. Bouwkamp, "On Bethe’s Theory Of Diffraction By Small Holes," Philips Res. Rep. 5, 321-332 (1950).
  36. J. Bravo-Abad, L. Mart’?n-Moreno, F. J. Garc’?a-Vidal, E. Hendry, and J. G’omez Rivas, "Transmission of light through periodic arrays of square holes: From a metallic wire mesh to an array of tiny holes," Phys. Rev. B 76, 241102 (2007).
  37. R. W. Wood, "Anomalous Diffraction Gratings," Phys. Rev. 48, 928-936 (1935).
  38. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24, 256-258 (1999).
  39. J. B. Pendry, L. Mart’?n-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004). [PubMed]
  40. F. J. Garc’?a de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007).
  41. R. Gordon, "Bethe’s aperture theory for arrays," Phys. Rev. A 76, 053806 (2007).
  42. H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature (London) 452, 728-731 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (4050 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited