OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 15145–15159

Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit

Eden Rephaeli and Shanhui Fan  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 15145-15159 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (647 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present theoretical considerations as well as detailed numerical design of absorber and emitter for Solar Thermophotovoltaics (STPV) applications. The absorber, consisting of an array of tungsten pyramids, was designed to provide near-unity absorptivity over all solar wavelengths for a wide angular range, enabling it to absorb light effectively from solar sources regardless of concentration. The emitter, a tungsten slab with Si/SiO2 multilayer stack, provides a sharp emissivity peak at the solar cell band-gap while suppressing emission at lower frequencies. We show that, under a suitable light concentration condition, and with a reasonable area ratio between the emitter and absorber, a STPV system employing such absorber-emitter pair and a single-junction solar cell can attain efficiency that exceeds the Shockley-Queisser limit.

© 2009 OSA

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Solar Energy

Original Manuscript: June 16, 2009
Revised Manuscript: July 20, 2009
Manuscript Accepted: July 20, 2009
Published: August 11, 2009

Eden Rephaeli and Shanhui Fan, "Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit," Opt. Express 17, 15145-15159 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
  2. R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67(3), 446–447 (1979).
  3. W. Ruppel and P. Wurfel, “Upper limit for the conversion of solar energy,” IEEE Trans. Electron. Dev. 27(4), 877–882 (1980).
  4. W. Spirkl and H. Ries, “Solar thermophotovoltaics: An assessment,” J. Appl. Phys. 57(9), 4409–4414 (1985).
  5. P. T. Landsberg and P. Baruch, “The thermodynamics of the conversion of radiation energy for photovoltaics,” J. Phys. Math. Gen. 22(11), 1911–1926 (1989).
  6. T. K. Chaudhuri, “A solar thermophotovoltaic converter using Pbs photovoltaic cells,” Int. J. Energy Res. 16(6), 481–487 (1992).
  7. V. Badescu, “Thermodynamic theory of thermophotovoltaic solar energy conversion,” J. Appl. Phys. 90(12), 6476–6486 (2001).
  8. V. Badescu, “Upper bounds for solar thermophotovoltaic efficiency,” Renew. Energy 30(2), 211–225 (2005).
  9. N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
  10. I. Tobias and A. Luque, “Ideal efficiency and potential of solar thermophotonic converters under optically and thermally concentrated power flux,” IEEE Trans. Electron. Dev. 49(11), 2024–2030 (2002).
  11. M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
  12. A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV Systems with Solar Powered Tungsten Emitters,” AIP Conf. Proc. 890, 327–334 (2007).
  13. V. M. Andreev, V. P. Khvostikov, O. A. Khvostikova, A. S. Vlasov, P. Y. Gazaryan, N. A. Sadchikov, and V. D. Rumyantsev, Solar thermophotovoltaic system with high temperature tungsten emitter,” in Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first IEEE (2005), pp. 671–674.
  14. K. W. Stone, N. S. Fatemi, and L. M. Garverick, “Operation and component testing of a solar thermophotovoltaic power system,” in Photovoltaic Specialists Conference, 1996, Conference Record of the Twenty Fifth IEEE (1996), pp. 1421–1424.
  15. H. Yugami, H. Sai, K. Nakamura, N. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3Er3Al5O12 eutectic composite selective emitter,” in Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE (2000), pp. 1214–1217.
  16. D. L. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006). [PubMed]
  17. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
  18. Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
  19. A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
  20. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
  21. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399 (2004).
  22. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380 (2003).
  23. A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
  24. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
  25. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998). [PubMed]
  26. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
  27. E. D. Palik, Handbook of Optical Constants of Solids, (Academic, New York, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited