OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 15186–15200

A modular implementation of dispersive materials for time-domain simulations with application to gold nanospheres at optical frequencies

D. Baumann, C. Fumeaux, C. Hafner, and E. P. Li  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 15186-15200 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (600 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The development of photonic nano-structures can strongly benefit from full-field electromagnetic (EM) simulations. To this end, geometrical flexibility and accurate material modelling are crucial requirements set on the simulation method. This paper introduces a modular implementation of dispersive materials for time-domain EM simulations with focus on the Finite-Volume Time-Domain (FVTD) method. The proposed treatment can handle electric and magnetic dispersive materials exhibiting multi-pole Debye, Lorentz and Drude models, which can be mixed and combined without restrictions. The presented technique is verified in several illustrative examples, where the backscattering from dispersive spheres is calculated. The amount of flexibility and freedom gained from the proposed implementation will be demonstrated in the challenging simulation of the plasmonic resonance behavior of two gold nanospheres coupled in close proximity, where the dispersive characteristic of gold is approximated by realistic values in the optical frequency range.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(290.1350) Scattering : Backscattering
(290.4020) Scattering : Mie theory
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Physical Optics

Original Manuscript: June 22, 2009
Revised Manuscript: July 17, 2009
Manuscript Accepted: July 23, 2009
Published: August 12, 2009

D. Baumann, C. Fumeaux, C. Hafner, and E. P. Li, "A modular implementation of dispersive materials for time-domain simulations with application to gold nanospheres at optical frequencies," Opt. Express 17, 15186-15200 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Danckwerts and L. Novotny, "Optical Frequency Mixing at Coupled Gold Nanoparticles," Phys. Rev. Lett. 98, 1-4 (2007). [CrossRef]
  2. D. Pinto and S. Obayya, "Accurate Perfectly Matched Layer Finite-Volume Time-Domain Method for Photonic Bandgap Devices," IEEE Photon. Technol. Lett. 20, 339-341 (2008). [CrossRef]
  3. P. Bonnet, X. Ferrieres, B. Michielsen, P. Klotz, and J. Roumiguieres, Time Domain Electromagnetics, chap. 9 Finite-Volume Time-Domain Method, pp. 307-367 (Academic Press, 1999).
  4. F. Edelvik and B. Strand, "Frequency Dispersive Materials for 3-D Hybrid Solvers in Time Domain," IEEE Trans. Antennas Propag. 51, 1199-1205 (2003). [CrossRef]
  5. P. Sewell, T. Benson, C. Christopoulos, D. Thomas, A. Vokuvic, and J. Wykes, "Transmission-Line Modeling (TLM) Based Upon Unstructured Tetrahedral Meshes," IEEE Trans. Microwave Theory Tech. 53, 1919-1928 (2005). [CrossRef]
  6. J.-F. Lee, R. Lee, and A. Cangellaris, "Time-Domain Finite-Element Methods," IEEE Trans. Antennas Propag. 45, 430-442 (1997). [CrossRef]
  7. J. S. Hesthaven and T. Warburton, Nodel Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, vol. 54 of Texts in Applied Mathematics (Springer New York, 2008).
  8. R. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A Frequency-Dependent Finite-Difference Time-Domain Formulation for Dispersive Materials," IEEE Trans. Electromagn. Compat. 32, 222-227 (1990). [CrossRef]
  9. D. F. Kelley and R. J. Luebbers, "Piecewise Linear Recursive Convolution for Dispersive Media using FDTD," IEEE Trans. Antennas Propag. 44, 792-797 (1996). [CrossRef]
  10. M. Okoniewski, M. Mrozowski, and M. A. Stuchly, "Simple Treatment of Multi-Term Dispersion in FDTD," IEEE Microwave Guided Wave Lett. 7, 121-123 (1997). [CrossRef]
  11. Y. Takayama and W. Klaus, "Reinterpretation of the Auxiliary Differential Equation Method for FDTD," IEEE Microwave Wireless Comp. Lett. 12, 102-104 (2002). [CrossRef]
  12. F. L. Teixeira, "Time-Domain Finite-Difference and Finite-Element Methods for Maxwell Equations in Complex Media," IEEE Trans. Antennas Propag. 56, 2150-2166 (2008). [CrossRef]
  13. V. Shankar, W. Hall, and A. Mohammadian, "A time-domain differential solver for electromagnetic scattering problems," Proc. IEEE 77, 709-721 (1989). [CrossRef]
  14. D. Baumann, C. Fumeaux, P. Leuchtmann, and R. Vahldieck, "Finite-Volume Time-Domain (FVTD) Modeling of a Broadband Double-Ridged Horn Antenna," Int. J. Numer. Model. 17, 285-298 (2004). [CrossRef]
  15. D. K. Firsov and J. LoVetri, "FVTD - Integral Equation Hybrid for Maxwell’s Equations," Int. J. Numer. Model. 21, 29-42 (2007). [CrossRef]
  16. C. Fumeaux, D. Baumann, and R. Vahldieck, "Finite-Volume Time-Domain Analysis of a Cavity-Backed Archimedean Spiral Antenna," IEEE Trans. Antennas Propag. 54, 844-851 (2006). [CrossRef]
  17. Y. Shi and C.-H. Liang, "The Finite-Volume Time-Domain Algorithm using Least Square Method in Solving Maxwell’s Equations," J. Comput. Phys. 226, 1444-1457 (2007). [CrossRef]
  18. D. Baumann, C. Fumeaux, and R. Vahldieck, "Field-Based Scattering-Matrix Extraction Scheme for the FVTD Method Exploiting a Flux-Splitting Algorithm," IEEE Trans. Microwave Theory Tech. 53, 3595-3605 (2005). [CrossRef]
  19. C. Fumeaux, K. Sankaran, and R. Vahldieck, "Spherical Perfectly Matched Absorber for Finite-Volume 3-D Domain Truncation," IEEE Trans. Microwave Theory Tech. 55, 2773-2781 (2007). [CrossRef]
  20. D. Baumann, C. Fumeaux, R. Vahldieck, and E. P. Li, "Conformal Perfectly Matched Absorber for Finite-Volume Simulations," in 19th Intern. Zurich Symposium on EMC (Asia Pacific EMC Week) (Singapore, 2008).
  21. R. F. Warming and R. M. Beam, "Upwind second-order difference schemes and applications in aerodynamic flows," AIAA J. 14, 1241-1249 (1976). [CrossRef]
  22. C. Fumeaux, D. Baumann, and R. Vahldieck, "A generalized local time-step scheme for efficient FVTD simulations in strongly inhomogeneous meshes," IEEE Trans. Microwave Theory Tech. 52, 1067-1076 (2004). [CrossRef]
  23. A. Taflove and S. C. Hagness, Computational Electrodynamics, The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  24. H. C. Van de Hulst, Light Scattering by Small Particles (John Wiley & Sons, Inc., 1957).
  25. R. F. Harrington, Time-Harmonic Electromagnetic Fields (John Wiley & Sons, Inc., 2001). [CrossRef]
  26. M. Kerker, W. D.S., and C. Giles, "Electromagnetic Scattering by Magnetic Spheres," J. Opt. Soc. Am. 73, 765-767 (1983). [CrossRef]
  27. H. Du, "Mie-Scattering Calculation," Appl. Opt. 43, 1951-1956 (2004). [CrossRef] [PubMed]
  28. R. Luebbers, D. Steich, and K. Kunz, "FDTD Calculation of Scattering from Frequency-Dependent Materials," IEEE Trans. Antennas Propag. 41, 1249-1257 (1993). [CrossRef]
  29. F. S. Barnes and B. Greenebaum, eds., Biological and Medical Aspects of Electromagnetic Fields, 3rd ed. (CRC Press, 2007).
  30. S. Gabriel, R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol. 41, 2271-2293 (1996). [CrossRef] [PubMed]
  31. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  32. A. Dhawan, S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, "Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers," Opt. Express 17, 9688-9703 (2009). [CrossRef] [PubMed]
  33. C. Hafner, Generalized Multipole Techniques for Electromagnetic and Light Scattering, chap. 3, pp. 21-38 (Elsevier Science B.V., 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited