OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 15210–15215

Collective emission and absorption in a linear resonator chain

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 15210-15215 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (115 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that a linear chain of circular macroscopic resonators coupled in parallel demonstrates the phenomena of “superabsorption” and superradiance. Both the frequency spectrum of the transmitted light through the resonator chain and the decay rate of the resonator chain being prepared in a proper initial state are proportional to the number of resonators in the chain, N, and the intensity of the emitted radiation grows as N2. The spectral bandwidth, the growth of the decay rate, and the intensity are restricted by the dispersion of the waveguides connecting the resonators.

© 2009 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(230.5750) Optical devices : Resonators
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optical Devices

Original Manuscript: June 22, 2009
Revised Manuscript: August 3, 2009
Manuscript Accepted: August 4, 2009
Published: August 12, 2009

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, "Collective emission and absorption in a linear resonator chain," Opt. Express 17, 15210-15215 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Heebner, R. Grover, and T. A. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer-Verlag, London, 2008).
  2. R. J. C. Spreeuw, N. J. van Druten, M. W. Beijersbergen, E. R. Eliel, and J. P. Woerdman, "Classical realization of a strongly driven two-level system," Phys. Rev. Lett. 65 2642-2645 (1990). [PubMed]
  3. C. Pare, L. Gagnon, and P. A. Belanger, "Aspherical laser resonators: An analogy with quantum mechanics," Phys. Rev. A 46, 4150-4160 (1992). [PubMed]
  4. R. J. C. Spreeuw, M. W. Beijersbergen, and J. P. Woerdman, "Optical ring cavities as tailored four-level systems: An application of the group U(2,2)," Phys. Rev. A 45, 1213-1229 (1992). [PubMed]
  5. D. Bouwmeester, N. H. Dekker, F. E. v. Dorsselaer, C. A. Schrama, P. M. Visser, and J. P. Woerdman, "Observation of Landau-Zener dynamics in classical optical systems," Phys. Rev. A 51 646-654 (1995). [PubMed]
  6. A. E. Siegman, "Laser beams and resonators: Beyond the 1960s," IEEE J. Sel. Top. Quantum Electron. 6, 1389-1399 (2000).
  7. L. Maleki, A. B. Matsko, D. Strekalov, and A. A. Savchenkov, "Photonic media with whispering-gallery modes," Proc. SPIE 5708 180-186 (2005).
  8. T. Opatrny and D. G. Welsch, "Coupled cavities for enhancing the cross-phase-modulation in electromagnetically induced transparency," Phys. Rev. A 64, 023805 (2001).
  9. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, "Coupled-resonator-induced transparency," Phys. Rev. A 69, 063804 (2004).
  10. D. D. Smith and H. Chang, "Coherence phenomena in coupled optical resonators," J. Mod. Opt. 51, 25032513 (2004).
  11. L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, "Tunable delay line with interacting whispering gallery-mode resonators," Opt. Lett. 29, 626-628 (2004).
  12. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, "Interference effects in lossy resonator chains," J. Mod. Opt. 51, 25152522 (2004).
  13. W. Suh, Z. Wang, and S. Fan, "Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities," IEEE J. Quantum Electron. 40, 15111518 (2004).
  14. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004). [PubMed]
  15. A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, "Induced transparency and absorption in coupled whispering-gallery microresonators," Phys. Rev. A 71, 043804 (2005).
  16. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006). [PubMed]
  17. Q. Xu, J. Shakya, and M. Lipson, "Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency," Opt. Express 14, 63-68 (2006).
  18. A. Imamoglu, "Interference of radiatively broadened resonances," Phys. Rev. A 40, 2835 (1989). [PubMed]
  19. S. E. Harris, "Electromagnetically induced transparency," Phys. Today  50, 3642 (1997).
  20. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, "Fano resonance in nanoscale structures," arXiv.org > condmat > arXiv:0902.3014
  21. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kukubun, "Second-order filter response from parallel coupled glass microring resonators," IEEE Phot. Tech. Lett. 11, 1426-1428 (1999).
  22. D. Dragoman and M. Dragoman, Quantum-Classical Analogies (Springer, 2004).
  23. D. Dragoman, "Classical versus complex fractional Fourier transformation," J. Opt. Soc. Am. A 26, 274-277 (2009).
  24. S. Chavez-Cerda, H. M. M. Cessa, and J. R. M. Cessa, "Quantum-like entanglement in classical optics," Opt. Photon. News 12, 38-38 (2007).
  25. Y.-F. Xiao, X.-B. Zou, W. Jiang, Y.-L. Chen, and G.-C. Guo, "Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems," Phys. Rev. A 75, 063833 (2007).
  26. R. H. Dicke, "Coherence in spontaneous radiation process," Phys. Rev. 93, 99-110 (1954).
  27. A. E. Siegman, Lasers (University Science Books, Mill Valley, California, 1986).
  28. R. Bonifacio and L. A. Lugiato, "Cooperative radiation process in two-level systems: Superfluorescence," Phys. Rev. A 11, 1507-1521 (1975).
  29. J. K. Poon, L. Zhu, G. A. DeRose, and A. Yariv, "Transmission and group delay of microring coupled-resonator optical waveguides," Opt. Lett. 31, 456-458 (2006). [PubMed]
  30. A. M. Kapitonov and V. N. Astratov, "Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities," Opt. Lett. 32, 409-411 (2007). [PubMed]
  31. F. Xia, L. Sekaric, and Y. Vlasov, "Resonantly enhanced all optical buffers on a silicon chip," IEEE Proceedings of Photonics in Switching Symposium, pp. 7-8 (2007).
  32. F. L. Kien and K. Hakuta, "Cooperative enhancement of channeling of emission from atoms into a nanofiber," Phys. Rev. A 77, 013801 (2008).
  33. P. Urquhart, "Compound optical-fiber-based resonators," J. Opt. Soc. Am. A 5, 803-812 (1988).
  34. K. Oda, N. Takato and H. Toba, "A wide-FSR waveguide double-ring resonator for optical FDM transmission systems," J. Lightwave Technol. 9, 728-736 (1991).
  35. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
  36. O. Schwelb and I. Frigyes, "A design for a high finesse parallel-coupled microring resonator filter," Microwave Opt. Technol. Lett. 38, 125-129 (2003).
  37. S. F. Mingaleev, A. E. Miroshnichenko, and Y. S. Kivshar, "Coupled-resonator-induced reflection in photoniccrystal waveguide structures," Opt. Express 16, 11647-11659 (2008). [PubMed]
  38. E. L. Ivchenko, A. I. Nesvizhskii, and S. Jorda, "Bragg reflection of light from quantum-well structures," Phys. Solid State 36, 1156-1161 (1994).
  39. M. Hubner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, "Optical lattices achieved by excitons in periodic quantum well structures," Phys. Rev. Lett. 83, 2841-2844 (1999).
  40. L. Pilozzi, A. DAndrea, and K. Cho, "Optical response in multi-quantum wells under Bragg conditions," Phys. Stat. Sol. (C) 1, 14101419 (2004).
  41. L. I. Deych, M. V. Erementchouk, A. A. Lisyansky, E. L. Ivchenko, and M. M. Voronov, "Exciton luminescence in one-dimensional resonant photonic crystals: A phenomenological approach," Phys. Rev. B 76, 075350 (2007).
  42. J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, "Silicon microtoroidal resonators with integrated MEMS tunable coupler," IEEE J. Sel. Top. Quantum. Electron. 13, 202-208 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited