OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 15216–15227

Tightly coupled tripole conductor pairs as constituents for a planar 2D-isotropic negative refractive index metamaterial

Andrea Vallecchi and Filippo Capolino  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 15216-15227 (2009)
http://dx.doi.org/10.1364/OE.17.015216


View Full Text Article

Enhanced HTML    Acrobat PDF (1573 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A metamaterial, arranged by stacking layers of planar constituents suitably shaped to be responsive to arbitrarily linearly polarized incident waves is here shown to exhibit 2D-isotropic effective negative refractive index (NRI). The general concept underlying this metamaterial design consists of closely pairing two metallic particles to accomplish, as a result of their tight coupling, both symmetric and antisymmetric resonance modes, whose proper superposition can lead to an effective negative refraction response. The proposed structure is composed by layers of periodically arranged pairs of face coupled loaded tripoles printed on the opposite sides of a single dielectric substrate. Through a comprehensive characterization of the transmission properties of such metamaterial, together with the analysis of its dispersion diagram, conclusive evidence that the medium exhibits effective NRI properties as well as good impedance matching to free space is provided. We also describe some guidelines to design the proposed metamaterial with a prescribed operational frequency bandwidth, dependently on the structure parameters.

© 2009 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(230.3990) Optical devices : Micro-optical devices
(260.5740) Physical optics : Resonance

ToC Category:
Metamaterials

History
Original Manuscript: April 30, 2009
Revised Manuscript: July 2, 2009
Manuscript Accepted: July 8, 2009
Published: August 13, 2009

Citation
Andrea Vallecchi and Filippo Capolino, "Tightly coupled tripole conductor pairs as constituents for a planar 2D-isotropic negative refractive index metamaterial," Opt. Express 17, 15216-15227 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-15216


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  3. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005). [CrossRef]
  4. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006). [CrossRef] [PubMed]
  5. J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88, 221,103/1–3 (2006).
  6. G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials (Amst.) 3(1), 10–27 (2009). [CrossRef]
  7. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. 11(1), 65–74 (2002). [CrossRef]
  8. V. Podolskiy, A. Sarychev, and V. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11(7), 735–745 (2003). [CrossRef] [PubMed]
  9. G. Shvets and Y. A. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A, Pure Appl. Opt. 8(4), S122–S130 (2006). [CrossRef]
  10. V. Lomakin, Y. Fainman, Y. Urzhumov, and G. Shvets, “Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites,” Opt. Express 14(23), 11164–11177 (2006). [CrossRef] [PubMed]
  11. A. Vallecchi, and F. Capolino, “Metamaterials based on pairs of tightly-coupled scatterers,” in Theory and Phenomena of Metamaterials, chap. 19 (CRC Press, Boca Raton, FL, 2009).
  12. J. C. Vardaxoglou, Frequency Selective Surfaces: Analysis and Design (Research Studies Press, NewYork, 1997).
  13. B. A. Munk, Frequency selective surfaces: Theory and Design (Wiley, New York, 2000).
  14. Th. Koschny, L. Zhang and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103/1–4 (2005).
  15. C. R. Simovski and H. Sailing, “Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting omega particles,” Phys. Lett. A 311(2-3), 254–263 (2003). [CrossRef]
  16. N. Wongkasemand, A. Akyurtlu, and K. A. Marx, “Group theory based design of isotropic negative refractive index metamaterials,” Progress in Electromagnetics Research 63, 295–310 (2006). [CrossRef]
  17. A. Grbica, G. V. Eleftheriades, “An isotropic three-dimensional negative-refractive-index transmission-line metamaterial,” J. Appl. Phys. 98, 043106/1–5 (2005).
  18. M. Zedler, C. Caloz, and P. Russer, “A 3-D isotropic left-handed metamaterial based on the rotated transmission-line matrix (TLM) scheme,” IEEE Trans. Microw. Theory Tech. 55(12), 2930–2941 (2007). [CrossRef]
  19. C. Imhof and R. Zengerle, “Pairs of metallic crosses as a left-handed metamaterial with improved polarization properties,” Opt. Express 14(18), 8257–8262 (2006). [CrossRef] [PubMed]
  20. L. Markley and G. V. Eleftheriades, “A negative-refractive-index metamaterial for incident plane waves of arbitrary polarization,” IEEE Antennas Wirel. Propag. Lett. 6(11), 28–32 (2007). [CrossRef]
  21. M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75, 235114/1–9 (2007).
  22. A. Vallecchi, F. Capolino, and A. Schuchinsky, “2-D isotropic effective negative refractive index metamaterial in planar technology,” IEEE Microwave Wireless Comp. Lett. 19(5), 269–271 (2009). [CrossRef]
  23. K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Lett. 29(22), 2623–2625 (2004). [CrossRef] [PubMed]
  24. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608/1–7 (2004).
  25. C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials (Amst.) 1(2), 62–80 (2007). [CrossRef]
  26. C. R. Simovski, S.A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B 75, 195111/1–9 (2007).
  27. C. R. Simovski, “On the extraction of local material parameters of meta-materials from experimental or simulated data,” in Theory and Phenomena of Metamaterials, Chap. 11 (CRC Press, Boca Raton, FL, 2009).
  28. D. Seetharamdoo, R Sauleau, K Mahdjoubi, and A. C. Tarot, “Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity,” J. Appl. Phys . 98, 063505/1–4 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited