OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 15228–15238

Development and characterization of an omni-directional photoacoustic point source for calibration of a staring 3D photoacoustic imaging system

Michael Roumeliotis, Pinhas Ephrat, John Patrick, and Jeffrey J. L. Carson  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 15228-15238 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (375 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photoacoustic imaging is a modality which makes use of the contrast provided by optical imaging techniques and the spatial resolution and penetration depth similar to acoustic imaging modalities. We have developed a method for fast 3D photoacoustic imaging using a sparse hemispherical array of transducers. Such a system requires characterization of the transducer's response to an ideal point source in order to accurately reconstruct objects in the imaging volume. First, an attempt was made to design an ideal photoacoustic point source via a combination of liquids which would appropriately scatter and absorb the light such that a spherical distribution was achieved. Methylene blue (MB+) was used as the primary optical absorber while Intralipid (IL) was used as the liquid responsible for the optical scatter. A multitude of combinations were tested and the signal uniformity was characterized. The combination of 200 µM MB+ and 0.09% IL was found to produce the most uniform signal over the range of transducers in the hemispherical array. The liquid source was then characterized over a broader range of azimuthal and zenith angles where it was shown the azimuthal consistency was much greater than the stability seen in different zenith elevations. The source was then used in a calibration scan for an imaging volume of 40x40x40 mm3. At 216 points evenly spaced in the imaging volume, parameters were recorded for signal amplitude, width, and time-of-flight. These calibration parameters could then be applied to an iterative reconstruction algorithm in an attempt to more accurately produce images.

© 2009 OSA

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 1, 2009
Revised Manuscript: July 28, 2009
Manuscript Accepted: July 29, 2009
Published: August 13, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Michael Roumeliotis, Pinhas Ephrat, John Patrick, and Jeffrey J. L. Carson, "Development and characterization of an omni-directional photoacoustic point source for calibration of a staring 3D photoacoustic imaging system," Opt. Express 17, 15228-15238 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Lu, J. Jiang, Y. Su, R. K. Wang, F. Zhang, and J. Yao, “Photoacoustic imaging: Its current status and future development,” in 4th International Conference on Photonics and Imaging in Biology and Medicine, (SPIE, 2006), 6047.
  2. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006). [CrossRef]
  3. G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991). [CrossRef] [PubMed]
  4. G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112(4), 1536–1544 (2002). [CrossRef] [PubMed]
  5. P. Liu, “The P-transform and photoacoustic image reconstruction,” Phys. Med. Biol. 43(3), 667–674 (1998). [CrossRef] [PubMed]
  6. C. G. A. Hoelen and F. F. M. de Mul, “Image reconstruction for photoacoustic scanning of tissue structures,” Appl. Opt. 39(31), 5872–5883 (2000). [CrossRef]
  7. D. Frauchiger, K. P. Kostli, G. Paltauf, M. Frenz, and H. P. Weber, “Optoacoustic tomography using a two dimensional optical pressure transducer and two different reconstruction algorithms,” in Hybrid and Novel Imaging and New Optical Instrumentation for Biomedical Applications, (SPIE, 2001), 4434, pp. 74–80.
  8. M. Xu, and L. V. Wang, “RF-induced thermoacoustic tomography,” in Proceedings of the 2002 IEEE Engineering in Medicine and Biology 24th Annual Conference and the 2002 Fall Meeting of the Biomedical Engineering Society (BMES / EMBS), (Institute of Electrical and Electronics Engineers Inc, 2002), pp. 1211–1212.
  9. D. H. Turnbull and F. S. Foster, “Fabrication and characterization of transducer elements in two-dimensional arrays for medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(4), 464–475 (1992). [CrossRef] [PubMed]
  10. X. Yang and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex with a ring-based ultrasonic virtual point detector,” J. Biomed. Opt. 12(6), 060507 (2007). [CrossRef]
  11. C. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93(3), 033902 (2008). [CrossRef]
  12. R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30(5), 856–860 (2003). [CrossRef] [PubMed]
  13. P. Ephrat, and J. J. L. Carson, “Measurement of photoacoustic detector sensitivity distribution by robotic source placement,” in 9th Conference on Photons Plus Ultrasound: Imaging and Sensing 2008, (SPIE, 2008), 6856.
  14. F. van der Have, B. Vastenhouw, M. Rentmeester, and F. J. Beekman, “System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT,” IEEE Trans. Med. Imaging 27(7), 960–971 (2008). [CrossRef] [PubMed]
  15. Y. Pawitan, S. Kohlmyer, T. Lewellen, and F. O'Sullivan, “PET system calibration and attenuation correction,” in Part 1 (of 3), (IEEE, 1996), pp. 1300–1304.
  16. M. Roumeliotis, P. Ephrat, and J. J. L. Carson, “Development of an omni-directional photoacoustic source for the characterization of a hemispherical sparse detector array,” in Photons Plus Ultrasound: Imaging and Sensing2009: The Tenth Conference on Biomedical Thermoacoustics, Optoacoustics and Acousto-optics (SPIE 2009) 7177, 71772F.
  17. P. Ephrat, M. Roumeliotis, F. S. Prato, and J. J. L. Carson, “Four-dimensional photoacoustic imaging of moving targets,” Opt. Express 16(26), 21570–21581 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited