OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 15280–15291

Extended Fano model of Extraordinary Electromagnetic Transmission through subwavelength hole arrays in the terahertz domain

Jean-Baptiste Masson, Alexander Podzorov, and Guilhem Gallot  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 15280-15291 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (259 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed an extended Fano model describing the Extraordinary Electromagnetic Transmission (EET) through arrays of subwavelength apertures, based on terahertz transmission measurements of arrays of various hole size and shapes. Considering a frequency-dependent coupling between resonant and non-resonant pathways, this model gives access to a simple analytical description of EET, provides good agreement with experimental data, and offers new parameters describing the influence of the hole size and shape on the transmitted signal.

© 2009 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(260.3090) Physical optics : Infrared, far
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: May 11, 2009
Revised Manuscript: June 30, 2009
Manuscript Accepted: June 30, 2009
Published: August 14, 2009

Jean-Baptiste Masson, Alexander Podzorov, and Guilhem Gallot, "Extended Fano model of Extraordinary Electromagnetic Transmission through subwavelength hole arrays in the terahertz domain," Opt. Express 17, 15280-15291 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-668 (1998). [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  3. E. Ozbay, "Plasmonic: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  4. H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452, 728-731 (2008). [CrossRef] [PubMed]
  5. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004). [CrossRef] [PubMed]
  6. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007). [CrossRef] [PubMed]
  7. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86(6), 1114-1117 (2001). [CrossRef]
  8. P. Lalanne, J. P. Hugonin, and J. C. Rodier, "Theory of Surface Plasmon Generation at Nanoslit Apertures," Phys. Rev. Lett. 95, 263,902 (2005). [CrossRef]
  9. J. Bravo-Abad, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, and L. Martin-Moreno, "Theory of Extraordinary Transmission of Light through Quasiperiodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 99, 203,905 (2007). [CrossRef]
  10. G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Physics 2, 262-267 (2006). [CrossRef]
  11. K. G. Lee and Q. H. Park, "Coupling of Surface Plasmon Polaritons and Light in Metallic Nanoslits," Phys. Rev. Lett. 95, 103,902 (2005). Now with Institut Pasteur, CNRS URA 2171, Unit In Silico Genetics, 75724 Paris Cedex 15, France [CrossRef]
  12. D. Qu and D. Grischkowsky, "Observation of a New Type of THz Resonance of Surface Plasmons Propagating on Metal-Film Hole Arrays," Phys. Rev. Lett. 93(19), 196,804 (2004).
  13. J. M. Brok and H. P. Urbach, "Extraordinary transmission through 1, 2 and 3 holes in a perfect conductor, modelled by a mode expansion technique," Opt. Exp. 14(7), 2552-2572 (2006). [CrossRef]
  14. A. Agrawal, Z. V. Vardeny, and A. Nahata, "Engineering the dielectric function of plasmonic lattices," Opt. Exp. 16(13), 9601-9613 (2008). [CrossRef]
  15. A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, "Squeezing MillimeterWaves into Microns," Phys. Rev. Lett. 92(14), 143,904 (2004).
  16. C. Genet, M. P. van Exter, and J. P. Woerdman, "Fano-type interpretation of red shifts and red tails in hole array transmission spectra," Opt. Comm. 225(4-6), 331-336 (2003). [CrossRef]
  17. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, "Role ofWood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes," Phys. Rev. B 67, 085,415 (2003). [CrossRef]
  18. S.-H. Chang, S. K. Gray, and G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Exp. 13(8), 3150-3165 (2005). [CrossRef]
  19. W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, "Direct Observation of a Transition of a Surface Plasmon Resonance from a Photonic Crystal Effect," Phys. Rev. Lett. 98, 183,901 (2007). [CrossRef]
  20. J.-B. Masson and G. Gallot, "Coupling between surface plasmons in subwavelength hole arrays," Phys. Rev. B 73, 121,401(R) (2006). [CrossRef]
  21. U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124(6), 1866-1875 (1961). [CrossRef]
  22. J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, "Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies," Appl. Phys. Lett. 91, 071,122 (2007). [CrossRef]
  23. S. Bandopadhyay, B. Dutta-Roy, and H. S. Mani, "Understanding the Fano Resonance : through Toy Models," Am. J. Phys. 72, 1501 (2004). [CrossRef]
  24. C.-M. Ryu and S. Y. Cho, "Phase evolution of the transmission coefficient in an Aharonov-Bohm ring with Fano resonance," Phys. Rev. B 58(7), 3572 (1998). [CrossRef]
  25. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66(7-8), 163-182 (1944). [CrossRef]
  26. C. J. Bouwkamp, "Diffraction theory," Rep. Prog. Phys. 17, 35-100 (1954). [CrossRef]
  27. D. Grischkowsky, S. R. Keiding, M. van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7(10), 2006-2015 (1990). [CrossRef]
  28. C.-C. Chen, "Transmission of microwave through perforated flat plates of finite thickness," IEEE Trans. Microwave Theo. Tech. 21(1), 1-6 (1973). [CrossRef]
  29. J.-B. Masson, A. Podzorov, and G. Gallot, "Anomalies in the disappearance of the extraordinary electromagnetic transmission in subwavelength hole arrays," Opt. Exp. 16(7), 4719-4730 (2008). [CrossRef]
  30. B. D. Fried and S. D. Conte, The plasma dispersion function. The Hilbert transform of the Gaussian (Academic Press, New York, 1961).
  31. C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics (Wiley and Hermann, Paris, 1977).
  32. D. G. Duffy, "On the numerical inversion of Laplace transforms: comparison of three new methods on characteristic problems from applications," ACM Trans. Math Soft. 19(3), 333-359 (1993). [CrossRef]
  33. K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical methods for physics and engineering (Cambridge University Press, 2006).
  34. W. H. Press, S. A. Teukolsky,W. T. Vetterling, and B. P. Flannery, Numerical recipes in C (Cambridge University Press, Cambridge, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited