OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 15292–15307

Experimental evaluation of optimized ablation patterns for laser refractive surgery

Carlos Dorronsoro, Laura Remon, Jesús Merayo-Lloves, and Susana Marcos  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 15292-15307 (2009)
http://dx.doi.org/10.1364/OE.17.015292


View Full Text Article

Enhanced HTML    Acrobat PDF (1033 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new experimental model based on plastic (Filofocon A) artificial eyes was used to study the ablation profiles and the outcomes of three state-of-the-art refractive surgery excimer lasers provided with narrow-beam flying spot and optimized algorithms (Ladarvision 4000, Alcon; Technolas 217 Z100, Bausch&Lomb; Allegretto wave Eye-Q, Wavelight). The 3-D ablation patterns produced by myopic laser corrections (-9, -6 and -3 D) on flat and spherical surfaces of Filofocon A were measured using high resolution optical profilometry. We found significant differences across lasers in the shape and depth of the ablation patterns. A comparison of the ablation patterns on flat and on spherical surfaces provided a measurement of the laser efficiency losses from the center to the periphery at each point of the spherical plastic corneas. This effect also varied across lasers, depending on their fluence (120–400 mJ/cm2). Estimates of the post-operative corneal shapes were obtained from the measurement on Filofocon A and plastic-corneal tissue correction factors. The predicted post-operative corneal ablation shape, ablated volume, asphericity and spherical aberration varied across lasers, as well as the relative contribution of ablation pattern designs and efficiency losses to the increased asphericity. Although the results show that the algorithms have been optimized to reduce the induction of spherical aberration, they would still benefit from the application of correction factors for efficiency effects derived from a systematic approach using experimental plastic models. These models have proved useful (1) to assess the outcomes of different lasers or ablation algorithms, (2) for precise calibration and testing of the lasers, and (3) to calculate experimental correction factors for efficiency effects.

© 2009 Optical Society of America

OCIS Codes
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(220.1000) Optical design and fabrication : Aberration compensation
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 20, 2009
Revised Manuscript: July 27, 2009
Manuscript Accepted: August 3, 2009
Published: August 14, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Carlos Dorronsoro, Laura Remon, Jesús Merayo-Lloves, and Susana Marcos, "Experimental evaluation of optimized ablation patterns for laser refractive surgery," Opt. Express 17, 15292-15307 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-15292


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Mrochen, M. S. Eldine, M. Kaemmerer, T. Seiler, and W. Hutz, "Improvement in photorefractive corneal laser surgery results using an active eye-tracking system," J. Cataract. Refract. Surg. 27, 1000-1006 (2001). [CrossRef] [PubMed]
  2. T. Kohnen, "Classification of excimer laser profiles," J. Cataract. Refract. Surg. 32, 543-544 (2006). [CrossRef] [PubMed]
  3. T. Kohnen, "Reshaping the cornea: Which laser profiles should we use?," J. Cataract. Refract. Surg. 34, 1225-1225 (2008). [CrossRef] [PubMed]
  4. E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001). [PubMed]
  5. S. Marcos, B. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberration measurements," Invest. Ophthalmol. Vis. Sci. 42, 3349-3356 (2001). [PubMed]
  6. M. Mrochen, M. Kaemmerer, and T. Seiler, "Wavefront-guided Laser in situ Keratomileusis: Early results in three eyes.," J. Refract. Surg. 16, 116-121 (2000). [PubMed]
  7. T. Kohnen, C. Kuhne, and J. Buhren, "The future role of wavefront-guided excimer ablation," Graefes Arch. Clin. Exp. Ophthalmol. 245, 189-194 (2007). [CrossRef]
  8. P. Padmanabhan, M. Mrochen, S. Basuthkar, D. Viswanathan, and R. Joseph, "Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: Contralateral comparative study," J. Cataract. Refract. Surg. 34, 389-397 (2008). [CrossRef] [PubMed]
  9. M. V. Netto, W. Dupps, and S. E. Wilson, "Wavefront-guided ablation: Evidence for efficacy compared to traditional ablation," Am. J. Ophthalmol. 141, 360-368 (2006). [CrossRef] [PubMed]
  10. J. L. Alio, and R. Montes-Mico, "Wavefront-guided versus standard LASIK enhancement for residual refractive errors," Ophthalmology 113, 191-197 (2006). [CrossRef]
  11. A. Perez-Escudero, C. Dorronsoro, L. Sawides, L. Remon, J. Merayo-Lloves, and S. Marcos, "Minor influence of Myopic Laser In Situ Keratomileusis on the Posterior Corneal Surface," Invest. Ophthalmol. Vis. Sci. iovs.09-3411 (2009). [CrossRef]
  12. W. J. Dupps, and S. E. Wilson, "Biomechanics and wound healing in the cornea," Exp. Eye Res. 83, 709-720 (2006). [CrossRef] [PubMed]
  13. M. Mrochen, and T. Seiler, "Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery," J. Refract. Surg. 17, S584-S587. (2001). [PubMed]
  14. S. Marcos, D. Cano, and S. Barbero, "Increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, 592-596 (2003).
  15. R. G. Anera, J. R. Jimenez, L. Jimenez del Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea," Opt. Lett. 28, 417-419 (2003). [CrossRef] [PubMed]
  16. J. R. Jimenez, R. G. Anera, L. Jiménez del Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81, 1521-1523 (2002). [CrossRef]
  17. D. Cano, B. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A. 21, 926-936 (2004). [CrossRef]
  18. D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Vis. Sci. 42, 1736-1742 (2001). [PubMed]
  19. S. Arba-Mosquera, and D. de Ortueta, "Geometrical analysis of the loss of ablation efficiency at non-normal incidence," Opt. Express 16, 3877-3895 (2008). [CrossRef] [PubMed]
  20. Y. Kwon, M. Choi, and S. Bott, "Impact of ablation efficiency reduction on post-surgery corneal asphericity: simulation of the laser refractive surgery with a flying spot laser beam," Opt. Express 16, 11808-11821 (2008). [CrossRef] [PubMed]
  21. J. R. Jimenez, R. G. Anera, L. J. del Barco, E. Hita, and F. Perez-Ocon, "Correction factor for ablation algorithms used in corneal refractive surgery with gaussian-profile beams," Opt. Express 13, 336-343 (2005). [CrossRef] [PubMed]
  22. J. R. Jimenez, R. G. Anera, L. J. del Barco, and E. Hita, "Influence of laser polarization on ocular refractive parameters after refractive surgery," Opt. Lett. 29, 962-964 (2004). [CrossRef] [PubMed]
  23. J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996). [PubMed]
  24. C. B. Odonnell, J. Kemner, and F. E. Odonnell, "Surface roughness in PMMA is linearly related to the amount of excimer laser ablation," J. Refract. Surg. 12, 171-174 (1996).
  25. A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri, and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract. Refract. Surg. 30, 2536-2542 (2003). [CrossRef]
  26. S. Marcos, C. Dorronsoro, and D. Cano, "Spherical aberration prevention method in e.g. laser refractive surgery system," (Patent WO 2005/122873 A1, 2005).
  27. C. Dorronsoro, D. Cano, J. Merayo, and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape," Opt. Express 14, 6142-6156 (2006). [CrossRef] [PubMed]
  28. J. Buehren, "The effect of the asphericity of myopic laser ablation profiles on the induction of wavefront aberrations," in Wavefront Congress (Alicante, Spain, 2009).
  29. ANSI Z80.11 Laser Systems for Corneal Reshaping (American National Standard Institute, 2007).
  30. B. Drum, "Evaluating the Safety and Effectiveness of "Aberration-Free" Ophthalmic Refractive Surgery," in 9th Annual FDA Science Forum (Washington, DC, 2003).
  31. B. Drum, "Radial efficiency function in refractive surgery: Ablation losses caused by corneal curvature," in 11th annual FDA Science Forum (Washington, DC, 2005).
  32. C. Dorronsoro, J. Siegel, L. Remon, and S. Marcos, "Suitability of Filofocon A and PMMA for experimental models in excimer laser ablation refractive surgery," Opt. Express 16, 20955-20967 (2008). [CrossRef] [PubMed]
  33. L. Llorente, B. Barbero, J. Merayo, and S. Marcos, "Changes in corneal and total aberrations induced by LASIK surgery for hyperopia.," J. Refract. Surg. 20, 203-216 (2004). [PubMed]
  34. R. Artigas, F. Laguarta, and C. Cadevall, "Dual-technology optical sensor head for 3D surface shape measurements on the micro- and nanoscales," O. Wolfgang, and T. Mitsuo, eds. (SPIE, Strasbourg, France, 2004), pp. 166-174.
  35. S. H. Goods, R. M. Watson, and M. Yi, "Thermal Expansion and Hydration Behavior of PMMA Molding Materials for LIGA Applications," (Sandia National Laboratories, Albuquerque, New Mexico, 2003).
  36. S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, "Validation of the estimation of corneal aberrations from videokeratography in keratoconus," J. Refract. Surg. 18, 263-270 (2002). [PubMed]
  37. B. T. Fisher, and D. W. Hahn, "Development and numerical solution of a mechanistic model for corneal tissue ablation with the 193 nm argon fluoride excimer laser," J. Opt. Soc. Am. A 24, 265-277 (2007). [CrossRef]
  38. J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, "Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy," Ophthalmol. 104, 823-830 (1997). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (4019 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited