OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 15330–15341

Compact SOI nanowire refractive index sensor using phase shifted Bragg grating

P. Prabhathan, V. M. Murukeshan, Zhang Jing, and Pamidighantam V. Ramana  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 15330-15341 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (273 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The phase shifted vertical side wall gratings are designed and numerically simulated on a submicron SOI waveguide to obtain the performance characteristics needed for an integrated refractive index sensor. The gratings are designed to obtain narrow band width, high transmittivity and sharp line shape in the resonant transmission so that the sensor sensitivity can be improved. The proposed sensor is easy to fabricate and will provide a linear response over a wide wavelength range with a compact structure dimension which is suitable for label free biosensing applications. The detection limit of the sensor is investigated through both wavelength shift and intensity measurement method and the performance parameter is compared with other silicon based structures like Mach-Zehnder interferometer, ring resonator and surface corrugated Bragg grating.

© 2009 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(050.5080) Diffraction and gratings : Phase shift
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

Original Manuscript: May 27, 2009
Revised Manuscript: August 2, 2009
Manuscript Accepted: August 4, 2009
Published: August 14, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

P. Prabhathan, V. M. Murukeshan, Zhang Jing, and Pamidighantam V. Ramana, "Compact SOI nanowire refractive index sensor using phase shifted Bragg grating," Opt. Express 17, 15330-15341 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. M. Lechuga, “Optical biosensors,” in Biosensors and Modern Biospecific Analytical Techniques. L. Gorton, Ed., vol. 44 of Comprehensive Analytical Chemistry Series (Elsevier Science BV, Amsterdam, The Netherlands.2005). pp. 209–250.
  2. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003). [CrossRef]
  3. B. J. Luff, R. D. Harris, J. S. Wilkinson, R. Wilson, and D. J. Schiffrin, “Integrated-optical directional coupler biosensor,” Opt. Lett. 21(8), 618–620 (1996). [CrossRef] [PubMed]
  4. A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. A. Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006). [CrossRef]
  5. C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006). [CrossRef]
  6. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007). [CrossRef] [PubMed]
  7. P. P. P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, “Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor,” Opt. Express 14(16), 7063–7072 (2006). [CrossRef] [PubMed]
  8. F. Dell’Olio and V. M. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007). [CrossRef] [PubMed]
  9. V. M. N. Passaro, R. Loiacono, G. D’Amico, and F. De Leonardis, “Design of Bragg Grating Sensors Based on Sub micrometer Optical Rib Waveguides in SOI,” IEEE Sens. J. 8(9), 1603–1611 (2008). [CrossRef]
  10. W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 11(1), 11–16 (2005). [CrossRef]
  11. A. S. Jugessur, J. Dou, J. S. Aitchison, R. M. De La Rue, and M. Gnan, “A photonic nano-Bragg grating device integrated with micro fluidic channels for bio-sensing applications,” Microelectron. Eng. 86(4-6), 1488–1490 (2009). [CrossRef]
  12. L. Zhu, Y. Huang, W. Green, and A. Yariv, "Tunable transmission filters based on corrugated sidewall Bragg gratings in polymer waveguides," in the Proceeding of2005conference on Lasers and Electro-Optics, CLEO1, pp.282–284.
  13. H. C. Kim, K. Ikeda, and Y. Fainman, "Tunable transmission resonant filter and modulator with vertical gratings," J. Lightwave Technol. 25(5), 1147–1151 (2007). [CrossRef]
  14. The FDTD simulations were performed by OptiFDTD-7.Optiwave Corporation.Ottawa.ON.Canada.
  15. R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrowband grating resonator filters in InGaAsP/InP waveguides,” Appl. Phys. Lett. 49(3), 125 (1986). [CrossRef]
  16. M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. D. L. Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006). [CrossRef]
  17. M. Rattier, H. Benisty, C. J. M. Smith, A. Bernaud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry–Pérot resonators,” IEEE J. Quantum Electron. 37(2), 237–243 (2001). [CrossRef]
  18. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide–cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002). [CrossRef]
  19. C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003). [CrossRef]
  20. Y. F. Xiao, V. Gaddam, and L. Yang, “Coupled optical microcavities: an enhanced refractometric sensing configuration,” Opt. Express 16(17), 12538–12543 (2008). [CrossRef] [PubMed]
  21. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008). [CrossRef] [PubMed]
  22. W. C. L. Hopman, H. J. W. M. Hoekstra, R. Dekker, L. Zhuang, and R. M. de Ridder, “Far-field scattering microscopy applied to analysis of slow light, power enhancement, and delay times in uniform Bragg waveguide gratings,” Opt. Express 15(4), 1851–1870 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited