OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 15381–15389

Optical binding mechanisms: a conceptual model for Gaussian beam traps

J. M. Taylor and G. D. Love  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 15381-15389 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (135 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical binding interactions between laser-trapped spherical microparticles are familiar in a wide range of trapping configurations. Recently it has been demonstrated that these experiments can be accurately modeled using Mie scattering or coupled dipole models. This can help confirm the physical phenomena underlying the inter-particle interactions, but does not necessarily develop a conceptual understanding of the effects that can lead to future predictions. Here we interpret results from a Mie scattering model to obtain a physical description which predict the behavior and trends for chains of trapped particles in Gaussian beam traps. In particular, it describes the non-uniform particle spacing and how it changes with the number of particles. We go further than simply demonstrating agreement, by showing that the mechanisms “hidden” within a mathematically and computationally demanding Mie scattering description can be explained in easily-understood terms.

© 2009 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(290.4020) Scattering : Mie theory

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: July 15, 2009
Revised Manuscript: August 12, 2009
Manuscript Accepted: August 12, 2009
Published: August 14, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

J. M. Taylor and G. D. Love, "Optical binding mechanisms: a conceptual model for Gaussian beam traps," Opt. Express 17, 15381-15389 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, "Optical Matter: Crystalization and Binding in Intense Optical Fields," Science 249, 749-754 (1990). [CrossRef] [PubMed]
  2. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, "One-Dimensional Optically Bound Arrays of Microscopic Particles," Phys. Rev. Lett. 89(28), 283,901 (2002).
  3. W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, "Self-organized Array of Regularly Spaced Microbeads in a Fiber-optical Trap," J. Opt. Soc. Am. B 20(7), 1568-1574 (2003). [CrossRef]
  4. N. K. Metzger, E. M. Wright, W. Sibbett, and K. Dholakia, "Visualization of Optical Binding of Microparticles Using a Femtosecond Fiber Optical Trap," Opt. Express 14(8), 3677-3687 (2006). [CrossRef]
  5. N. K. Metzger, K. Dholakia, and E. M. Wright, "Observation of Bistability and Hysteresis in Optical Binding of Two Dielectric Spheres," Phys. Rev. Lett. 96, 068,102 (2006). [CrossRef]
  6. C. D. Mellor, T. A. Fennerty, and C. D. Bain, "Polarization Effects in Optically Bound Particle Arrays," Opt. Express 14, 10,079-10,088 (2006). [CrossRef]
  7. J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, "Photonic Clusters Formed By Dielectric Microspheres: Numerical Simulations," Phys. Rev. B 72, 085,130 (2005). [CrossRef]
  8. M. Kawano, J. T. Blakely, R. Gordon, and D. Sinton, "Theory of Dielectric Micro-sphere Dynamics in a Dualbeam Optical Trap," Opt. Express 16, 9306-9317 (2008). [CrossRef] [PubMed]
  9. J. M. Taylor, L. Y. Wong, C. D. Bain, and G. D. Love, "Emergent Properties in Optically Bound Matter," Opt. Express 16, 6921-6929 (2008). [CrossRef] [PubMed]
  10. V. Kar´asek, O. Brzobohat´y, and P. Zem´anek, "Longitudinal Optical Binding of Several Spherical Particles Studied by the Coupled Dipole Method," J. Opt. A 11, 034,009 (2009). [CrossRef]
  11. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Kn¨oner, A.M. Br’anczyk, N. R. Heckenberg, and H. Rubinsztein- Dunlop, "Optical Tweezers Computational Toolbox," J. Opt. A 9, S196-S203 (2007). [CrossRef]
  12. M. Dienerowitz, M. Mazilu, and K. Dholakia, "Optical Manipulation of Nanoparticles: A Review," J. Nanophoton. 2, 021,875 (2008).
  13. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, "Optical Binding," Phys. Rev. Lett. 63(12), 1233-1236 (1989). [CrossRef]
  14. D. McGloin, A. E. Carruthers, K. Dholakia, and E. M. Wright, "Optically Bound Microscopic Particles in One Dimension," Phys. Rev. E 69, 021,403 (2004). [CrossRef]
  15. T. C? iz?ma’r, V. Kolla’rova´, Z. Bouchal, and P. Zema’nek, "Sub-micron Particle Organization by Self-imaging of Non-diffracting Beams," New J. Phys. 8, 43 (2006). [CrossRef]
  16. D.W. Mackowski, "Analysis of Radiative Scattering for Multiple Sphere Configurations," Proc. R. Soc. London, Ser. A 433, 599-614 (1991). [CrossRef]
  17. C. Liang and Y. T. Lo, "Scattering by Two Spheres," Radio Science 2, 1481-1495 (1967).
  18. K. A. Fuller and G. W. Kattawar, "Consummate Solution to the Problem of Classical Electromagnetic Scattering by an Ensemble of Spheres I: Linear Chains," Opt. Lett. 13(2), 90-92 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited