OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 15409–15419

Electrically controlled modulation in a photonic crystal nanocavity

Dirk Englund, Bryan Ellis, Elizabeth Edwards, Tomas Sarmiento, James S. Harris, David A. B. Miller, and Jelena Vučković  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 15409-15419 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1578 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a compact modulator based on a photonic crystal nanocavity whose resonance is electrically controlled through an integrated p-i-n junction. The sub-micron size of the nanocavity promises very low capacitance, high bandwidth, and efficient on-chip integration in optical interconnects.

© 2009 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(230.6080) Optical devices : Sources
(270.5580) Quantum optics : Quantum electrodynamics
(250.4110) Optoelectronics : Modulators

ToC Category:
Photonic Crystals

Original Manuscript: May 11, 2009
Revised Manuscript: August 3, 2009
Manuscript Accepted: August 8, 2009
Published: August 17, 2009

Dirk Englund, Bryan Ellis, Elizabeth Edwards, Tomas Sarmiento, James S. Harris, David A. B. Miller, and Jelena Vuckovic, "Electrically controlled modulation in a photonic crystal nanocavity," Opt. Express 17, 15409-15419 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. B. Miller, "Device Requirements for Optical Interconnects to Silicon Chips," Proc. IEEE 97, 1166 - 1185 (2009).
  2. J. Meindl, "Interconnect opportunities for gigascale integration," Micro. IEEE 23(3), 28-35 (2003).
  3. M. Lipson, "Guiding, modulating, and emitting light on Silicon-challenges and opportunities," J. Lightwave Technol. 23(12), 4222-4238 (2005).
  4. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light, 2nd ed. (Princeton University Press, Princeton, NJ, 2008).
  5. H. Takano, B.-S. Song, T. Asano, and S. Noda, "Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal," Opt. Express 14(8), 3491-3496 (2006).
  6. T. Matsumoto, T. Asatsuma, and T. Baba, "Experimental demonstration of a wavelength demultiplexer based on negative-refractive photonic-crystal components," Appl. Phys. Lett. 91(9), 091117 (2007).
  7. N. Hitoshi, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, "Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks," Opt. Express 12, 6606-6614 (2004). [PubMed]
  8. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photonics 1, 49-52 (2006).
  9. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nature Materials 6, 862 - 865 (2007). [PubMed]
  10. I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Ultrafast nonlinear optical tuning of photonic crystal cavities," Appl. Phys. Lett. 90(9), 091118 (2007).
  11. D. Englund, H. Altug, B. Ellis, and J. Vu?kovi?, "Ultrafast Photonic Crystal Lasers," Laser Photon. Rev. 2, 1863-8880 (2008).
  12. X. Chen, Y.-S. Chen, Y. Zhao, W. Jiang, and R. T. Chen, "Capacitor-embedded 0.54 pJ/bit silicon-slot photonic crystal waveguide modulator," Opt. Lett. 34(5), 602-604 (2009).
  13. A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, "Mode structure of the L3 photonic crystal cavity," Appl. Phys. Lett. 90(24), 241117 (2007).
  14. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 95, 013904 (2005).
  15. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, "Simultaneous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystals," Science 308(5726), 1296-1298 (2005).
  16. J. Talghader and J. S. Smith, "Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities," Appl. Phys. Lett. 66, 335 (1995).
  17. F. G. D. Corte, G. Cocorullo, M. Lodice, and I. Rendina, "Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers," Appl. Phys. Lett. 77, 1614 (2000).
  18. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwell’s equations with shifting material boundaries," Phys. Rev. E 65(066611) (2002).
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, CA, 1998).
  20. J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, and D.-H. Jang, "Roomtemperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54?m," Appl. Phys. Lett. 76(21), 2982-2984 (2000).
  21. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 um," Electron. Lett. 37(12), 764-766 (2001).
  22. G. Vecchi, F. Raineri, I. Sagnes, A. Yacomotti, P. Monnier, T. J. Karle, K.-H. Lee, R. Braive, L. L. Gratiet, S. Guilet, G. Beaudoin, A. Taneau, S. Bouchoule, A. Levenson, and R. Raj, "Continuous-wave operation of photonic band-edge laser near 1.55 um on silicon wafer," Opt. Express 15(12), 7551-7556 (2007).
  23. B. B. Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. D. Cioccio, and J.-M. Fedeli, "Room-temperature InAs/InP Quantum Dots laser operation based on heterogeneous "2.5 D" Photonic Crystal," Opt. Express 14(20), 9269-9276 (2006).
  24. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon microring silicon modulators," Opt. Express 15(2), 430-436 (2007).
  25. Y. Vlasov, W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks," Nat. Photon 2, 242 - 246 (2008).
  26. R. Schmidt, U. Scholz, M. Vitzethum, R. Fix, C. Metzner, P. Kailuweit, D. Reuter, A. Wieck, M. C. Hübner, S. Stufler, A. Zrenner, S. Malzer, and G. H. Döhler, "Fabrication of genuine single-quantum-dot light-emitting diodes," Appl. Phys. Lett. 88(12), 121115 (2006).
  27. S. Fan, P. Villeneuve, J. Joannopoulos, and H. Haus, "Channel drop filters in photonic crystals," Opt. Express 3(1), 4-11 (1998).
  28. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photoniccrystal microcavity," Opt. Lett. 29(10), 1093-1095 (2004).
  29. M. Lon?ar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82(26), 4648-4650 (2003).
  30. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vu?kovi?, "Generation and transfer of single photons on a photonic crystal chip," Opt. Express 15, 5550-8 (2007). [PubMed]
  31. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, "Silica-on-Silicon Waveguide Quantum Circuits," Science 320(5876), 646-649 (2008).
  32. B. R. Bennett, R. A. Soref, and J. A. D. Alamo, "Carrier-Induced Change in Refractive Index of InP, GaAs, and InGaAsP," IEEE J. Quantum Electron. 26, 113-122 (1990).
  33. D. A. B. Miller, C. T. Seaton, M. E. Prise, and S. D. Smith, "Band-Gap¯Resonant Nonlinear Refraction in III-V Semiconductors," Phys. Rev. Lett. 47(3), 197-200 (1981).
  34. D. S. Chemla, I. Bar-Joseph, J. M. Kuo, T. Y. Chang, C. Klingshirn, G. Livescu, and D. A. B. Miller, "Modulation of absorption in field-effect quantum well structures," IEEE J. Quantum Electron. 24, 1664-1676 (1988).
  35. H. Casey, D. D. Sell, and K. W. Wecht, "Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV," J. Appl. Phys. 46, 250 (1975).
  36. T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "Rabi Oscillations of Excitons in Single Quantum Dots," Phys. Rev. Lett. 87(13), 133603 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited