OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 15534–15540

Who needs a cathode? Creating a second-order nonlinearity by charging glass fiber with two anodes

W. Margulis, O. Tarasenko, and N. Myrén  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 15534-15540 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (713 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report that it is possible to create a fiber electret by having both internal electrodes of a twin-hole fiber at the same anodic potential, i.e., without the use of a contacted cathode electrode. We find that a stronger and more temperature-stable charge distribution results when the fiber core is subjected to an external field near zero. Negative charges from the air surrounding the fiber are sufficient for the recording of an electric field across the core of the fiber that is twice stronger than when one anode and one cathode electrode are used. The enhancement in stability and in the strength of the effective χ(2) induced are a significant step towards the wider use of fibers with a second order optical nonlinearity.

© 2009 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Nonlinear Optics

Original Manuscript: July 14, 2009
Revised Manuscript: August 12, 2009
Manuscript Accepted: August 13, 2009
Published: August 18, 2009

W. Margulis, O. Tarasenko, and N. Myrén, "Who needs a cathode?
Creating a second-order nonlinearity by charging glass fiber with two anodes," Opt. Express 17, 15534-15540 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991). [CrossRef] [PubMed]
  2. P. G. Kazansky, L. Dong, and P. S. J. Russell, “High second-order nonlinearity in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994). [CrossRef] [PubMed]
  3. X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of linear electro-optic effect in temperature/electric-field poled optical fibres,” Electron. Lett. 30(25), 2162–2163 (1994). [CrossRef]
  4. D. E. Carlson, K. W. Hang, and G. F. Stockdale, “Electrode ‘polarization’ in alkali-containing glasses,” J. Am. Ceram. Soc. 55(7), 337–341 (1972). [CrossRef]
  5. W. A. Lanford, K. Davis, P. Lamarche, T. Laursen, R. Groleau, and R. H. Doremus, “Hydration of soda-lime glass,” J. Non-Cryst. Solids 33(2), 249–266 (1979). [CrossRef]
  6. T. J. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998). [CrossRef]
  7. P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994). [CrossRef]
  8. W. Margulis and F. Laurell, “Interferometric study of poled glass under etching,” Opt. Lett. 21(21), 1786–1788 (1996). [CrossRef] [PubMed]
  9. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83(17), 3623–3625 (2003). [CrossRef]
  10. T. G. Alley and S. R. Brueck, “Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass,” Opt. Lett. 23(15), 1170–1172 (1998). [CrossRef]
  11. Y. Quiquempois, A. Kudlinski, and G. Martinelli, “Zero-potential condition in thermally poled silica samples: evidence of a negative electric field outside the depletion layer,” J. Opt. Soc. Am. B 22(3), 598–604 (2005). [CrossRef]
  12. W. Xu, D. Wong, and S. Fleming, “Evolution of linear electro-optic coefficients and third-order nonlinearity during prolonged negative thermal poling of silica fibre,” Electron. Lett. 35(11), 922–923 (1999). [CrossRef]
  13. P. Blazkiewicz, W. Xu, D. Wong, and S. Fleming, “Mechanism for thermal poling in twin-hole silicate fibers,” J. Opt. Soc. Am. B 19(4), 870–874 (2002). [CrossRef]
  14. N. Myrén and W. Margulis, “Time evolution of frozen-in field during poling of fiber with alloy electrodes,” Opt. Express 13(9), 3438–3444 (2005). [CrossRef] [PubMed]
  15. H. An and S. Fleming, “Investigation of the spatial distribution of second-order nonlinearity in thermally poled optical fibers,” Opt. Express 13(9), 3500–3505 (2005). [CrossRef] [PubMed]
  16. K. Lee, P. Hu, J. L. Blows, D. Thorncraft, and J. Baxter, “200-m optical fiber with an integrated electrode and its poling,” Opt. Lett. 29(18), 2124–2126 (2004). [CrossRef] [PubMed]
  17. K. Lee, P. Henry, S. Fleming, and J. L. Blows, “Drawing of Optical Fiber With Internal Co-drawn Wire and Conductive Coating and Electrooptic Modulation Demonstration,” IEEE Photon. Technol. Lett. 18(8), 914–916 (2006). [CrossRef]
  18. Y. Quiquempois, A. Kudlinski, G. Martinelli, G. A. Quintero, P. M. Gouvea, I. C. S. Carvalho, and W. Margulis, “Time evolution of the second-order nonlinear distribution of poled Infrasil samples during annealing experiments,” Opt. Express 14(26), 12984–12993 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited