OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 15592–15607

Laser ultrasonic surface wave dispersion technique for non-destructive evaluation of human dental enamel

Hsiao-Chuan Wang, Simon Fleming, Yung-Chun Lee, Sue Law, Michael Swain, and Jing Xue  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 15592-15607 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (581 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes a novel optical system for clinical diagnosis of dental enamel based on its elasticity. Current examination techniques are typically destructive, and frequently impractical for in-vivo inspection. This paper describes the first application of a laser ultrasonic non-destructive evaluation (NDE) method for clinical dental diagnosis. It performs remote elasticity evaluation on small dimension samples. A focused laser line-source generates broadband surface acoustic wave (SAW) impulses which are detected with a simplified optical fibre interferometer. The measured SAW velocity dispersion spectrum was in turn used to characterise the elasticity of the specimen. Different metal structures were measured to verify the system performance. The results agree well with theoretical values and confirm the reliability and accuracy of the laser NDE system. This technique was then applied to evaluate the surface of sound natural human dental enamel. The measured dispersion spectra match theoretical expectations and the influences of both the enamel and the underlying dentin on the surface wave propagation were observed. This is the first time, to the best of our knowledge, that a laser based SAW velocity dispersion technique has been successfully applied on human dental enamel. As a remote, non-destructive technique it is applicable in-vivo and opens the way for early diagnosis of dental caries.

© 2009 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(240.6690) Optics at surfaces : Surface waves
(280.3375) Remote sensing and sensors : Laser induced ultrasonics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 9, 2009
Revised Manuscript: July 28, 2009
Manuscript Accepted: July 29, 2009
Published: August 19, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Hsiao-Chuan Wang, Simon Fleming, Yung-Chun Lee, Sue Law, Michael Swain, and Jing Xue, "Laser ultrasonic surface wave dispersion technique for non-destructive evaluation of human dental enamel," Opt. Express 17, 15592-15607 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. D. Miller, “Agency of micro-organisms in decay of the teeth”, Dental Cosmos, 1883.
  2. B. Krasse, “Biological factors as indicators of future caries,” Int. Dent. J. 38(4), 219–225 (1988). [PubMed]
  3. F. Feagin, T. Koulourides, and W. Pigman, “The characterization of enamel surface demineralization, remineralization, and associated hardness changes in human and bovine material,” Arch. Oral Biol. 14(12), 1407–1417 (1969). [CrossRef] [PubMed]
  4. S. Habelitz, S. J. Marshall, G. W. Marshall, and M. Balooch, “Mechanical properties of human dental enamel on the nanometre scale,” Arch. Oral Biol. 46(2), 173–183 (2001). [CrossRef] [PubMed]
  5. J. L. Cuy, A. B. Mann, K. J. Livi, M. F. Teaford, and T. P. Weihs, “Nanoindentation mapping of the mechanical properties of human molar tooth enamel,” Arch. Oral Biol. 47(4), 281–291 (2002). [CrossRef] [PubMed]
  6. A. I. Ismail, “Visual and visuo-tactile detection of dental caries,” J. Dent. Res. 83 (1), C56–C66 (2004). [CrossRef] [PubMed]
  7. F. Lippert, D. M. Parker, and K. D. Jandt, “In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation,” J. Colloid Interface Sci. 280(2), 442–448 (2004). [CrossRef] [PubMed]
  8. T. Kundu, ed., Ultrasonic nondestructive evaluation: engineering and biological material characterization. 2004, CRC Press.
  9. D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332(1–2), 157–163 (1998). [CrossRef]
  10. C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000). [CrossRef]
  11. J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical Generation and Characterization of Acoustic Waves in Thin Films: Fundamentals and Applications,” Annu. Rev. Mater. Sci. 30(1), 117–157 (2000). [CrossRef]
  12. Y. C. Lee, J. O. Kim, and J. D. Achenbach, “Measurement of elastic constants and mass density by acoustic microscopy”, IEEE Ultrasonics Symposium, vol.1, pp.607–612, October 1993.
  13. C. S. Scruby, and L. E. Drain, Laser Ultrasonics: Techniques and Applications. 1990: Adam Hilger Ltd.
  14. A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: Elastic properties of surface layers,” J. Appl. Phys. 71(1), 227–238 (1991). [CrossRef]
  15. J. Monchalin, “Optical Detection of Ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33(5), 485–499 (1986). [CrossRef]
  16. R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10(11), R139–R168 (1999). [CrossRef]
  17. B. Mitra, A. Shelamoff, and D. J. Booth, “An optical fibre interferometer for remote detection of laser generated ultrasonics,” Meas. Sci. Technol. 9(9), 1432–1436 (1998). [CrossRef]
  18. A. J. A. Bruinsma and J. A. Vogel, “Ultrasonic noncontact inspection system with optical fiber methods,” Appl. Opt. 27(22), 4690–4695 (1988). [CrossRef] [PubMed]
  19. T. D. Dudderar, C. P. Burger, J. A. Gilbert, J. A. Smith, and B. R. Peters, “Fiber optic sensing for ultrasonic NDE,” J. Nondestructive Evaluation 6(3), 135–146 (1987). [CrossRef]
  20. H. S. Park, G. Thursby, and B. Culshaw, “Detection of laser-generated ultrasound based on phase demodulation technique using a fibre Fabry-Perot interferometer,” Meas. Sci. Technol. 16(6), 1261–1266 (2005). [CrossRef]
  21. 21T. S. Jang, S. S. Lee, I. B. Kwon, W. J. Lee, J. J. Lee, T. S. Jang, S. S. Lee, I. B. Kwon, W. J Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(6), 767–775 (2002). [CrossRef]
  22. E. Soczkiewicz, “The Penetration Depth of the Rayleigh Surface Waves,” Nondestructive Testing and Evaluation 13(2), 113–119 (1997). [CrossRef]
  23. J. D. Achenbach, Wave Propagation in Elastic Solids. 1984: Elsevier Science Ltd.
  24. J. L. Rose, Ultrasonic Waves in Solid Media. 1999: Cambridge University Press.
  25. I. Arias and J. D. Achenbach, “Thermoelastic generation of ultrasound by line-focused laser irradiation,” Int. J. Solids Struct. 40(25), 6917–6935 (2003). [CrossRef]
  26. H. C. Wang, S. Fleming, and Y. C. Lee, “Simple, all-optical, noncontact, depth-selective, narrowband surface acoustic wave measurement system for evaluating the Rayleigh velocity of small samples or areas,” Appl. Opt. 48(8), 1444–1451 (2009). [CrossRef] [PubMed]
  27. D. Schneider and T. Schwarz, “A photoacoustic method for characterising thin films,” Surf. Coat. Tech. 91(1–2), 136–146 (1997). [CrossRef]
  28. D. Schneider, T. Witke, T. Schwarz, B. Schoneich, and B. Schultrich, “Testing ultra-thin films by laser-acoustics,” Surf. Coat. Tech. 126(2–3), 136–141 (2000). [CrossRef]
  29. T. T. Wu and Y. C. Chen, “Dispersion of laser generated surface waves in an epoxy-bonded layered medium,” Ultrasonics 34(8), 793–799 (1996). [CrossRef]
  30. A. Briggs, Acoustic Microscopy. 1992: Clarendon Press. Oxford.
  31. H. C. Wang, S. Fleming, and Y. C. Lee, “A remote, non-destructive laser ultrasonic material evaluation system with simplified optical fibre interferometer detection,” J. Nondestructive Evaluation 28(2), 75–83 (2009). [CrossRef]
  32. J. Kushibiki, K. L. Ha, H. Kato, N. Chubachi, and F. Dunn, “Application of Acoustic Microscopy to Dental Material Characterization”, IEEE 1987 Ultrasonics Symposium, pp.837–842, 1987.
  33. S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68(2), 107–112 (1989). [CrossRef] [PubMed]
  34. H. C. Wang, S. Fleming, S. Law, and T. Huang, Selection of an appropriate laser wavelength for launching surface acoustic waves on tooth enamel. in Proceedings of IEEE Australian Conference on Optical Fibre Technology/Australian Optical Society (ACOFT/AOS). 2006. Melbourne, Australia.
  35. R. G. Maev, L. A. Denisova, E. Y. Maeva, and A. A. Denissov, “New data on histology and physico-mechanical properties of human tooth tissue obtained with acoustic microscopy,” Ultrasound Med. Biol. 28(1), 131–136 (2002). [CrossRef] [PubMed]
  36. D. W. Blodgett, “Applications of laser-based ultrasonics to the characterization of the internal structure of teeth,” J. Acoust. Soc. Am. 114(1), 542–549 (2003). [CrossRef] [PubMed]
  37. N. Carlson and J. Johnson, “Pulsed laser energy through fiberoptics for generation of ultrasound,” J. Nondestructive Evaluation 12(3), 187–192 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited