OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 15679–15684

STED microscopy with a MHz pulsed stimulated-Raman-scattering source

Brian R Rankin and Stefan W Hell  »View Author Affiliations


Optics Express, Vol. 17, Issue 18, pp. 15679-15684 (2009)
http://dx.doi.org/10.1364/OE.17.015679


View Full Text Article

Enhanced HTML    Acrobat PDF (1626 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We perform stimulated emission depletion (STED) microscopy with a novel light source consisting of a fiber-amplified, frequency doubled laser operating with a 1 MHz repetition rate and a 530 nm output coupled into a standard single mode fiber to produce a tunable spectrum of discrete peaks via stimulated Raman scattering (SRS). Using peaks at 585, 600, and 616 nm as STED light we perform STED microscopy with resolution down to 20-30 nm. The nanosecond pulsed light source should prove valuable for all forms of microscopy requiring both brilliance and multiple wavelengths in the visible range.

© 2009 OSA

OCIS Codes
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(290.5910) Scattering : Scattering, stimulated Raman

ToC Category:
Microscopy

History
Original Manuscript: June 26, 2009
Revised Manuscript: August 10, 2009
Manuscript Accepted: August 11, 2009
Published: August 20, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Brian R Rankin and Stefan W Hell, "STED microscopy with a MHz pulsed stimulated-Raman-scattering source," Opt. Express 17, 15679-15684 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-15679


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. W. Hell and J. Wichmann, “Breaking the Diffraction Resolution Limit by Stimulated-Emission - Stimulated-Emission-Depletion Fluorescence Microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  2. B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A. 105(38), 14271–14276 (2008). [CrossRef] [PubMed]
  3. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009). [CrossRef]
  4. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000). [CrossRef] [PubMed]
  5. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006). [CrossRef] [PubMed]
  6. V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett. 82(18), 3125–3127 (2003). [CrossRef]
  7. K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007). [CrossRef] [PubMed]
  8. D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008). [CrossRef] [PubMed]
  9. B. R. Rankin, R. R. Kellner, and S. W. Hell, “Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source,” Opt. Lett. 33(21), 2491–2493 (2008). [CrossRef] [PubMed]
  10. R. H. Stolen, A. R. Tynes, and E. P. Ippen, “Raman Oscillation in Glass Optical Waveguide,” Appl. Phys. Lett. 20(2), 62–64 (1972). [CrossRef]
  11. P. J. Gao, C. J. Nie, T. L. Yang, and H. Z. Su, “Stimulated Raman-Scattering up to 10 Orders in an Optical Fiber,” Appl. Phys. (Berl.) 24(4), 303–306 (1981). [CrossRef]
  12. G. Rosman, “High-Order Comb Spectrum from Stimulated Raman-Scattering in a Silica-Core Fiber,” Opt. Quantum Electron. 14(1), 92–93 (1982). [CrossRef]
  13. G. Agrawal, Nonlinear Fiber Optics, Fourth Edition ed. (Academic Press, Burlington, 2007).
  14. T. J. Kane, L. A. Smoliar, F. Adams, M. A. Arbore, D. R. Balsley, M. Byer, G. Conway, W. M. Grossman, G. Keaton, J. D. Kmetec, M. Leonardo, J. J. Morehead, and W. Wiechmann, “> 10 watt fiber laser structure with 0.5-5 MHz repetition rate and 0.5-1.5 pulse width,” Fifth International Symposium on Laser Precision Microfabrication 5662, 496–500 (2004).
  15. M. J. Leonardo, M. W. Byer, G. L. Keaton, D. J. Richard, F. J. Adams, J. L. Nightingale, M. A. Arbore, S. Guzsella, and L. A. Smoliar, “Fiber amplifier based UV laser source,” Proc. SPIE 7195, 7195F(2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited