OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 15685–15699

Finite element analysis of Brillouin gain in SBS-suppressing optical fibers with non-uniform acoustic velocity profiles

Benjamin Ward and Justin Spring  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 15685-15699 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (460 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A numerical investigation is presented of Brillouin gain in SBS-suppressing optical fibers with non-uniform acoustic velocity profiles. The equation determining the acoustic displacement in response to the electrostriction caused by the pump and Stokes waves reduces to the non-homogeneous Helmholtz equation for fibers with a uniform acoustic velocity profile. In this special case the acoustic displacement and subsequently the Brillouin gain are calculated using a Green's function. These results are then used to validate a finite-element solution of the same equation. This finite element method is then used to analyze a standard large mode area fiber as well as fibers incorporating four different acoustic velocity profiles with 5% variation in the acoustic velocity across the core. The profiles which suppress the peak Brillouin gain most effectively exhibit a maximum acoustic gradient near the midpoint between the center and boundary of the fiber core. These profiles produce 11 dB of suppression relative to standard large mode area fibers.

© 2009 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(140.3510) Lasers and laser optics : Lasers, fiber
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 15, 2009
Revised Manuscript: July 29, 2009
Manuscript Accepted: August 14, 2009
Published: August 20, 2009

Benjamin Ward and Justin Spring, "Finite element analysis of Brillouin gain in SBS-suppressing optical fibers with non-uniform acoustic velocity profiles," Opt. Express 17, 15685-15699 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30(5), 459–461 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-5-459 . [CrossRef] [PubMed]
  2. Y. Jeong, J. Nilsson, J. Sahu, D. Payne, R. Horley, L. Hickey, and P. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007). [CrossRef]
  3. G. P. Agrawal, Nonlinear Fiber Optics, Third Edition (Academic, New York, 2001).
  4. C. G. Carlson, P. D. Dragic, B. W. Graf, R. K. Price, J. J. Coleman, and G. R. Swenson, “High power Ybdoped Fiber Laser-Based LIDAR for Space Weather,” Proc. SPIE 5891, 68,730K–1–68,730K–12 (2008).
  5. K. Takeno, T. Ozeki, S. Moriwaki, and N. Mio, “100 W, single-frequency operation of an injection-locked Nd:YAG laser,” Opt. Lett. 30(16), 2110–2112 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-16-2110 . [CrossRef] [PubMed]
  6. E. C. Cheung, J. G. Ho, G. D. Goodno, R. R. Rice, J. Rothenberg, P. Thielen, M. Weber, and M. Wickham, “Diffractive-optics-based beam combination of a phase-locked fiber laser array,” Opt. Lett. 33(4), 354–356 (2008), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-4-354 . [CrossRef] [PubMed]
  7. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-25-7-442 . [CrossRef]
  8. M. Hildebrandt, M. Frede, P. Kwee, B. Willke, and D. Kracht, “Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power,” Opt. Express 25, 11,071–11,076 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-23-11071 .
  9. M. D. Mermelstein, A. D. Yablon, and C. Headley, “Suppression of Stimulated Brillouin Scattering in an Er-Yb Fiber Amplifier Utilizing Temperature Segmentation,” in Optical Amplifiers and Their Applications Topical Meeting Technical Digest (CD) (Optical Society of America, 2005), paper TuD3.
  10. V. I. Kovalev and R. G. Harrison, “Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers,” Opt. Lett. 31(2), 161–163 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-2-161 . [CrossRef] [PubMed]
  11. J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of Stimulated Brillouin Scattering in Single-Frequency Multi-Kilowatt Fiber Amplifiers,” Proc. SPIE 6873, 68,730O–1–7 (2008).
  12. S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. R. J. A. De Meritt, and L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15(25), 17,044–17,050 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-17044 . [CrossRef]
  13. M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-8290 . [CrossRef] [PubMed]
  14. M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, and D. J. DiGiovanni, “11.2 dB SBS Gain Suppression in a Large Modea Area Yb-doped Optical Fiber,” Proc. SPIE 6873, 68,730N–1–68,730N–7 (2008).
  15. P. D. Dragic, C. Liu, G. C. Papen, and A. Galvanauskas, “Optical Fiber with an Acoustic Guiding Layer for Stimulated Brillouin Scattering Suppression,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CThZ3. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2005-CThZ3
  16. A. H. McCurdy, “Modeling of Stimulated Brillouin Scattering in Optical Fibers with Arbitrary Radial Index Profile,” J. Lightwave Technol. 23(11), 3509–3516 (2005). [CrossRef]
  17. V. I. Kovalev and R. G. Harrison, “Threshold for stimulated Brillouin scattering in optical fiber,” Opt. Express 15(26), 17,625–17,630 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-17625 . [CrossRef]
  18. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13(14), 5338–5346 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-14-5338 . [CrossRef] [PubMed]
  19. P. D. Dragic, “Acoustical-optical fibers for control of stimulated Brillouin scattering,” in 2006 Digest of the LEOS Summer Topical Meetings, pp. 3–4. (2006).
  20. M. D. Mermelstein, S. Ramachandran, J. M. Fini, and S. Ghalmi, “SBS gain efficiency measurements and modeling in a 1714 mm2 effective area LP08 higher-order mode optical fiber,” Opt. Express 15(24), 15,952–15,963 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-15952 . [CrossRef]
  21. J. Nilsson, “SBS Supression at the kilowatt level,” presented at SPIE Photonics West, San Jose, California, USA, 24–29 Jan. (2009).
  22. E. Peral and A. Yariv, “Degradation of Modulation and Noise Characteristics of Semiconductor Lasers After Propagation in Optical Fiber Due to a Phase Shift Induced by Stimulated Brillouin Scattering,” IEEE J. Quantum Electron. 35(8), 1185–1195 (1999). [CrossRef]
  23. R. D. Cook, Finite Element Modeling for Stress Analysis (Wiley, New York, 1995).
  24. S. J. Farlow, Partial Differential Equations for Scientists and Engineers (Dover, New York, 1993).
  25. M. D. Greenberg, Application of Green’s Functions in Science and Engineering (Prentice Hall, New Jersey,1971).
  26. C. Tang, “Saturation and Spectral Characteristics of the Stokes Emission in the Stimulated Brillouin Process,” J. Appl. Phys. 37(8), 2945–2956 (1966), http://link.aip.org/link/?JAPIAU/37/2945/1 . [CrossRef]
  27. P. C. Hammer, O. J. Marlowe, and A. H. Stroud, “Numerical Integration over Simplexes and Cones,” Math. Tables Other Aids Comput. 10(55), 130–137 (1956). [CrossRef]
  28. B. G. Ward, “Finite Element Analysis of Photonic Crystal Rods with Inhomogeneous Anisotropic Refractive Index Tensor,” IEEE J. Quantum Electron. 44(2), 150–156 (2008). [CrossRef]
  29. B. G. Ward, “Bend performance-enhanced photonic crystal fibers with anisotropic numerical aperture,” Opt. Express 16(12), 8532–8548 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-853 . [CrossRef] [PubMed]
  30. W. Torruellas, M. Alam, J. Edgecumbe, K. Tankala, J. Rothenberg, and M. Wickham, “Spectral SBS model for Yb:DCF with Discrete acoustic core designs,” presented at the SPIE Defense and Security Symposium, Orlando, Florida, USA, 13–17 Apr. 2009.
  31. W. Zou, Z. He, and K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped inner cladding,” Opt. Express 16(14), 10006–10017 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-14-10006 . [CrossRef] [PubMed]
  32. W. Zou, Z. He, and K. Hotate, “Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006). [CrossRef]
  33. Ward and Spring, “Brillouin gain in optical fibers with inhomogeneous acoustic velocity”, Proc. SPIE, 7195, 71951J–1–11 (2009).
  34. V. I. Kovalev and R. G. Harrison, “Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27(22), 2022–2024 (2002), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-22-2022 . [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (197 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited